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...en mijn broertje



“The whole of life is just like watching a film. Only it’s as though

you always get in ten minutes after the big picture has started, and

no-one will tell you the plot, so you have to work it out all yourself

from the clues.”

Terry Pratchett, Moving Pictures (1990)

1
General Introduction

1



Chapter 1. Introduction

1.1 Preface

Between the fertilisation of an egg and the birth of an animal, one of life’s most dramatic
processes takes place: embryonic development. The first major event is gastrulation,
which transforms the embryo from a simple ball of similar-looking cells to a complex
torus-like structure, with different tissue layers forming the gut, nervous tissue, skin and
the material for internal organs. In bilateral animals, gastrulation coincides with the
formation of the main body axis that runs from head to tail, perpendicular to the dorsal-
ventral and the left-right axis (Wolpert, 2007). This process involves extensive tissue
reshaping, cell ingression and divisions in a posterior undifferentiated zone. In at least
three bilaterian clades – the annelids, arthropods and vertebrates –, axis formation is
paired with segmentation (Balavoine and Adoutte, 2003, Blair, 2008, Davis and Patel,
1999, Peel and Akam, 2003). Segmentation divides the main body axis into repeated ele-
ments, which can then be used to specify ribs and vertebrae in vertebrate animals, or e.g.
multiple pairs of legs in centipedes (Fig. 1.1A). Segments first manifest in the developing
embryo as an alternating stripe pattern of so-called segmentation genes across the body
axis (Fig. 1.1B). In most segmented animals, these stripes are laid down in an anterior-
to-posterior progression, appearing one after another with precise periodic timing from a
posterior zone with undifferentiated cells; this is known as sequential segmentation.1

The regular pattern and clock-like nature of sequential segmentation has inspired the-
oreticians for decades. This started in 1976 with the conceptual “clock and wavefront
model” for vertebrate somitogenesis by Cooke and Zeeman, who proposed that a cel-
lular clock could underlay the process (Cooke and Zeeman, 1976), in the form of an
oscillatory cell state. This clock is paired with a wavefront of cell differentiation, which
retracts towards the posterior due to tissue growth, and transforms the temporal dynamics
of the clock into a spatial pattern of somites.2 Evidence for this model was first found
in 1997, when Palmeirim et al. (Palmeirim et al., 1997) demonstrated that hairy mRNA
oscillates in the vertebrate undifferentiated zone, and that these oscillations are crucial
for somitogenesis. Since then, evidence has accumulated in favour of the “clock and
wavefront” model with the discovery of more oscillating genes essential for somitogen-
esis, and the discovery that signalling gradients of Wnt, FGF and retinoic acid (RA) can
modify the point where somites are formed, resembling a wavefront (Aulehla and Pour-
quié, 2010). The recent discovery that gene expression oscillations are also involved in
insect segmentation, supports the idea that a clock-and-wavefront mechanism could also
be at work outside the vertebrate clade (Choe et al., 2006, El-Sherif et al., 2012, Sarrazin
et al., 2012).

1Some insect species (like the fruit fly Drosophila) form segments differently: all stripes are laid down
simultaneously and well before gastrulation and formation of the main body axis.

2More information is given in section 1.3.1
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Figure 1.1. Segments in three bilaterian clades A) Manifestations of segments in the
three animal clades that display overt segmentation: the external cuticle rings (annuli) of
an annelid worm; the clearly visible, leg-bearing segments of the centipedes; and the spinal
column in a chick embryo. ( Centipede: Yasunori Koide - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=16029265, annelid worm: myscienceacademy.com,
chick: Larsson lab, McGill university ) B) a schematic depiction of sequential segmentation.
Left is anterior. The undifferentiated growth zone is depicted with the grey dots.

However, despite decades of experimental and theoretical research on segmentation
and its evolution, there are still many open questions on how it exactly works, and why
it evolved to work this way. For instance, how are the oscillations translated into somites
or segments (Beaupeux and François, 2016, Cotterell et al., 2015)? How did sequential
segmentation evolve into a simultaneous mechanism like that of Drosophila (El-Sherif
et al., 2012, Peel, 2004)? Was the common ancestor of bilaterians segmented, and what
did that mechanism look like (ten Tusscher, 2013)? New experiments and theoretical
models continue to challenge and expand our notions on segmentation in different anim-
als (Clark and Akam, 2016, Cotterell et al., 2015, Shih et al., 2015, Tsiairis and Aulehla,
2016). In this thesis, we use a variety of computational models to address a broad range
of developmental and evolutionary questions regarding the how and why of sequential
segmentation.
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Chapter 1. Introduction

1.2 The how and the why of development, evolution and

modelling

In order to understand how models can aid the study of segmentation, we have to discuss
the general questions of development and evolution. In a sense, the type of questions is
the same regardless of the specific developmental process: the same questions can – and
have been – applied to e.g. butterfly and fruit fly wings (Lack et al., 2016, McMillan
et al., 2002) and tooth development (Salazar-Ciudad and Jernvall, 2010).

During embryonic development, interactions between a genetic program and mo-
lecules, cells, and tissues give rise to a phenotype. On a subcellular level, proteins,
RNAs and other molecules form an interaction network that changes the expression of
genes within a cell (cell state) as development progresses. Changes or refinement of gene
expression may alter the chemical and biomechanical properties of a cell by regulating
cytoskeletal or adhesion proteins, or lead to changes in the division behaviour. At the
tissue level, extracellular cues such as cell-cell communication and diffusible proteins
(morphogens) provide feedback to the intracellular network, coordinating cell states over
larger distances: this can cause distinct spatial patterns of different cell states to form
across the tissue. The physical interactions between cells may then lead to morphogen-
esis: the acquisition of tissue shape through cell movement and divisions. By changing
the environment in which cells find themselves, morphogenesis may feed back on (the
network responsible for) cell state, changing or refining it until a stable tissue state is
reached.

These multi-scale, multi-feedback interactions make it hard to disentangle how a de-
velopmental mechanism generates a particular trait (Jaeger and Sharpe, 2014). Compu-
tational models can be a powerful tool for understanding developmental mechanisms, by
allowing us to first investigate the independent action of the different components and
then to combine them incrementally to study what higher-level properties emerge. For
instance, a model of the self-organisation of the slime mould Dictyostelium discoideum

showed how a few basic processes (signalling, cell differentiation and extracellular mat-
rix production) cooperate to produce the complex movements both during slug migration
and the formation of the fruiting body (Marée and Hogeweg, 2002, Marée and Hogeweg,
2001). A multiscale model of somitogenesis was able to identify inconsistencies and
gaps in the available knowledge by integrating several models of subprocesses (Hester
et al., 2011). If the underlying molecular details of the developmental process are not
yet known, a more coarse-grained model may be useful for generating new hypotheses –
like the Cooke and Zeeman model mentioned earlier (Cooke and Zeeman, 1976).
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1.2 The how and the why of development, evolution and modelling

As Dobzhansky put it, “Nothing in biology makes sense except in the light of evo-
lution” (Dobzhansky, 1973), and embryonic development is no exception – evolution
shapes the developmental process. To study this interaction, we take the evolution of the
embryonic structure itself as a given, and ask how its developmental mechanism evolved:
how did incremental changes lead to the complex processes we see today? And – perhaps
even more interesting – why did this particular developmental mechanism evolve to form
this particular structure? From this perspective, we investigate what properties of the de-
velopmental mechanism gave a selective advantage over the other possible mechanisms
that generate the same structure. For instance, one developmental mechanism may have
a greater robustness against gene expression noise or environmental disturbances than
other mechanisms. However, because development is part of a complex genotype-to-
phenotype map, a developmental process also influences the future evolutionary potential
of a multicellular organism.3 For example, some mechanisms may be more evolvable:
they can easily be changed such that potentially favourable new phenotypes emerge.
Thus, as has been noted before (Gissis et al., 2011), Dobzhansky’s statement is also true
in a reversed form: nothing in evolution makes sense except in the light of development,
for multicellular organisms at least.

Our current knowledge of the evolution of developmental processes is based on study-
ing extant animals and a very sparse fossil record. We therefore do not know what
ancestral developmental processes did not stand the test of time, or existed in poorly
fossilisable animals. While evolutionary models cannot prove that a simulated mechan-
ism is physically feasible or that a particular evolutionary trajectory was taken, they are
useful for assessing the likelihood of evolutionary outcomes under various conditions.
There are two computational tactics for evo-devo questions: the ensemble approach and
evolutionary simulation. In an ensemble approach, either all possible topologies of small
gene networks, or a large collection of randomly generated networks, is assessed for
the ability to generate a certain phenotype – a striped pattern for instance (Cotterell and
Sharpe, 2010, Jiménez et al., 2015, Solé et al., 2002). The advantage of this approach is
that a wide range of genotypes can be assessed, exposing many, if not all, possible pat-
terning mechanisms. In the context of segmentation, these approaches have shown that
there is a limited number of stripe-generating mechanisms, that differ in their robustness
and evolvability; within their mutational neighbourhood, they have different alternative
phenotypes (Jiménez et al., 2015). Furthermore, these mechanisms are not connected in
genotype space: they cannot mutate from one to the other without losing the selected-for
phenotype along the way (Cotterell and Sharpe, 2010). These outcomes suggest a role for
historical contingency in the evolution of developmental mechanisms. Still, it remains to
be seen how well these outcomes apply to the behaviour of actual biological networks,
which tend to contain many genes and interactions, and may therefore more easily allow

3But remember that this complex map itself is evolved! Evolution shapes the process that shapes evolution,
not only in development (Hogeweg, 2012)
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Chapter 1. Introduction

for connections between distinct regions of the genotype-phenotype map.

In this thesis, we will only use evolutionary simulations to answer our “why” ques-
tions. In contrast to ensemble approaches, each evolutionary simulation starts with a
population of individuals, each carrying a single randomly generated genotype that is
subject to mutation and selection: in-silico evolution. We assume that having a partic-
ular embryonic structure confers fitness, which is formalised in the fitness criterion: the
better the mechanism (encoded by the genotype) can generate the structure, the higher
the fitness of the individual. We then study what types of mechanism can evolve, given
the embryonic structure that we select for. Because these models simulate the process
of evolution, they have the advantage that a perfect "fossil" record is preserved of earlier
mechanisms and the routes between them. Multiple simulations can be run to assess
the likelihood of evolving a certain mechanism. By giving the evolutionary model suf-
ficient degrees of freedom, mechanisms may evolve that match real-world examples, as
well as alternative mechanisms that only evolve in silico; these can then be compared
with regards to evolvability and robustness (Salazar-Ciudad et al., 2001a, ten Tusscher
and Hogeweg, 2011). The evolved gene expression networks can also be dissected in
detail, assessing how certain network modules shape the developmental mechanism and
the course of evolution (Fujimoto et al., 2008, Kohsokabe and Kaneko, 2016). Addition-
ally, the selection pressures and starting conditions (what genes are expressed, what other
developmental processes are already present) can be varied to assess how these shape the
likelihood of evolving particular mechanisms. For instance, a study on circadian clocks
demonstrated that a particular combination of seasonality in the day-night rhythm and
environmental noise is required for the evolution of realistic, complex circadian clock
networks (Troein et al., 2009).

In summary, computational models are invaluable tools for answering the mechan-
istic “how” questions of developmental processes and the proximate and ultimate “why”
questions of their evolution. Of course, theoretical models still require experimental data
to provide input for basic assumptions and details on the process, and to test predictions
that follow from the model. Below, we will therefore discuss what both experiments and
models have already elucidated about sequential segmentation.

1.3 Modes of segmentation

As briefly mentioned earlier, there are roughly two ways in which segments are gener-
ated during development: simultaneously and sequentially. In most segmented animals,
the segments are generated sequentially from a posterior zone, in a rhythmical anterior-
to-posterior progression. The exact process however differs between clades; the timing
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1.3 Modes of segmentation

between axial elongation and segmentation can differ, as well as the mechanism which
specifies segment boundaries and segment polarity.

In vertebrates, somites are formed from the paraxial, presomitic mesoderm (PSM) that
is laid down on either side of the notochord during gastrulation (Bénazéraf and Pour-
quié, 2013). Before somites split off the PSM, they are first specified with a gene ex-
pression pattern in the anterior PSM. This pattern is generated by a segmentation clock
with the Notch pathway as the main oscillating module in all vertebrates, and Delta-
Notch signalling synchronises these oscillations between neighbouring cells (Hubaud
and Pourquié, 2014). Gradients of Wnt and FGF emanating from the posterior keep the
PSM in an undifferentiated, oscillating state; FGF is counteracted in the anterior by a
gradient of retinoic acid (RA), which is produced by the somites (Aulehla and Pourquié,
2010). The clock is fastest in the posterior PSM and slows down towards the anterior
(a frequency gradient), causing the appearance of a kinematic wave of gene expression
travelling across the PSM. In the anterior, this wave defines the pre-pattern of somite
boundaries and rostro-caudal polarity within the somites by upregulating other genes
4. Oscillations eventually cease before the somite buds off from the PSM (Hubaud and
Pourquié, 2014).

In short-germ insects like Tribolium, the segmentation process bears considerable sim-
ilarity to somitogenesis. The pair-rule genes that define segments display oscillations in
the posterior unsegmented zone (Brena and Akam, 2013, Sarrazin et al., 2012); with reg-
ular periodicity a stripe emerges form this zone, travelling a short distance before halting
(El-Sherif et al., 2012). Unlike in vertebrates, this stripe splits in two to generate the
definitive segment pattern. Furthermore, while in vertebrates the elongation of the main
body axis precedes somitogenesis, in Tribolium this occurs in the region of stripe forma-
tion anterior to the posterior undifferentiated zone (Nakamoto et al., 2015).
In annelids, while segments are created in an anterior-to-posterior order, no evidence has
so far been found for a segmentation clock. Segments are generated via divisions of pos-
terior cells called teloblasts (Balavoine, 2014, Shimizu and Nakamoto, 2001). In some
annelids, daughters of these teloblasts proceed with stereotyped divisions to contribute
specific parts of a segment; in others the segmentation mechanism is unknown (Bala-
voine, 2014, Shimizu and Nakamoto, 2001). Segment patterning thus seems to happen
through asymmetric division rather than oscillatory gene expression (Shimizu and Na-
kamoto, 2001).

The simultaneous mode of generating segments has so far only been found in long-
germ insects, and has been studied in detail in the model species Drosophila (Peel, 2004).
Segmentation occurs very early in development, before gastrulation and axis extension.

4The point at which this determination takes place is commonly called the wavefront or determination front
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Chapter 1. Introduction

A cascade of gene regulation, starting from gradients of maternally deposited mRNA,
subdivides the egg into progressively narrower regions until the repeated pattern of seg-
mentation genes is specified (Ingham, 1988, Peel, 2004). Each stripe is therefore created
by a different combination of activating and inhibiting factors, in contrast to clock pat-
terning which repeats the same process for each segment.

Most experimental and modelling efforts thus far have focused on Drosophila and
vertebrate segmentation. Models of Drosophila patterning have for instance elucidated
the interactions between the gap genes, which translate the maternal gradients into a
number of distinct regions along the egg (Crombach et al., 2012, Jaeger et al., 2004). In
this thesis, we will mainly focus on sequential segmentation. Below, we discuss some
of the major open questions regarding segmentation, axis extension and the evolution
of segmentation, and the modelling approaches that have thus far been used to these
questions.

1.3.1 The clock-to-stripe transition

Models have been used to study vertebrate somitogenesis on all levels of organisation:
how genetic interactions lead to gene expression oscillations (Goldbeter and Pourquié,
2008, Lewis, 2003, Schröter et al., 2012, Tiedemann et al., 2007), how oscillations are
synchronised between cells (Herrgen et al., 2010, Lewis, 2003, Morelli et al., 2009, Terry
et al., 2011, Tiedemann et al., 2014), and how somites take shape (Dias et al., 2014,
Grima and Schnell, 2007, Hester et al., 2011). Despite the tremendous progress that has
been made, at the larger scale of somite determination it is still heavily debated how
somite boundary definition occurs, how this depends on gene expression oscillations and
whether and how the oscillation phase is translated to intrasomite polarity. Several func-
tions have also been proposed for the frequency gradient that causes the travelling wave
of gene expression across the PSM: whether and how it determines somite polarity (Jae-
ger and Goodwin, 2001, Murray et al., 2011), is required for somite boundary formation
(Beaupeux and François, 2016, Harima and Kageyama, 2013), or for somite size scaling
(Lauschke et al., 2013). Finally, FGF and Wnt have been thought to determine the pos-
ition of the determination front, since adding or depleting these signals leads to smaller
or larger somites, respectively (Bajard et al., 2014, Dubrulle et al., 2001). However, the
necessity of the signalling gradients for determining the wavefront position has recently
been questioned (Cotterell et al., 2015, Mallo, 2016, Murray et al., 2011).

At the time of the original “clock and wavefront” model, the existence of internal
somite polarity or travelling waves of gene expression were not yet known; Cooke and
Zeeman therefore only needed to explain the formation of discrete blocks of somites
(Cooke and Zeeman, 1976). They assumed that as long as a block of cells differentiates
at the same time, they can become separated as a somite from the rest of the PSM via
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1.3 Modes of segmentation

differential adhesion. They proposed that a timing gradient (the wavefront, probably in-
formed by an actual morphogen gradient) retracts across the tissue towards the posterior,
and determines for each cell at what moment it starts to differentiate. An intracellular
oscillator interacts with this wavefront to transform the smoothly retracting signal into a
stepwise process: one phase of the clock speeds up this wavefront and the other slows
it down, so that an entire block of cells becomes a somite at the same time (Cooke and
Zeeman, 1976).

Subsequent models attempted to explain somite determination in conjunction with
gene expression waves (i.e. a frequency gradient) and/or intrasomite polarity patterning.
Hans Meinhardt was the first to suggest that the oscillation phase becomes memorised
upon somite determination, informing both somite polarity and inter-somite boundaries
(Meinhardt, 1986). In the mechanism that he proposed, the posteriorly retracting determ-
ination front, the travelling wave and the memorisation of the oscillation phase arise as
emergent properties due to interactions between two cell states. These states are auto-
activating and inhibit each other locally, but activate each other on a larger length scale,
causing non-cell-autonomous oscillations throughout the tissue(Meinhardt, 1986). In the
anterior, the boundary of a previously formed half-somite (with either anterior or pos-
terior identity) is responsible for the formation of a new half with opposite identity. A
gradient of morphogen is thus only required for generating the first somite boundary,
after which somite formation progresses independently.

Later models adopted Meinhardt’s notion that the anterior or posterior identity of a cell
within a somite results from "freezing" the phase of the oscillator, but incorporated cell-
autonomous oscillators rather than reaction-diffusion. Some of these models assumed
that the frequency gradient responsible for forming the travelling waves, is also a pre-
requisite for the freezing of oscillations: it brings the oscillation frequency to zero in the
anterior PSM, stopping the oscillations entirely and thereby forming a stable somite pre-
pattern (Jaeger and Goodwin, 2001, Murray et al., 2011). In other models, a threshold
concentration of FGF or Wnt determines the point at which the clock can switch on
somite polarity genes, before oscillations halt completely (Hester et al., 2011, Mazzitello
et al., 2008). In both cases, the clock phase is directly memorised as somite polarity, and
somite determination occurs in a smooth, cell-by-cell manner rather than block-wise.
The frequency gradient itself has been proposed to be the result of cell ageing (Jaeger
and Goodwin, 2001), cell-cell synchronisation with non-oscillatory cells in the anterior
(Murray et al., 2011), or interactions between the morphogen gradient Wnt or FGF and
the clock (Gibb et al., 2009, Hester et al., 2011, Mazzitello et al., 2008).

Recent experiments demonstrated that oscillation frequency decreases by only 50%
before the somite is formed and oscillations stop (Niwa et al., 2011, Shih et al., 2015),
while somite boundaries are established earlier in the PSM (Akiyama et al., 2014).

9



Chapter 1. Introduction

Moreover, there is evidence that the oscillator phase is not directly memorised into somite
polarity, but that somite polarity formation is a “secondary” process. First the somite be-
comes specified as a nearly uniform block by upregulation of differentiation genes (e.g.
Mesp2 and Ripply), then this block obtains polarity through interactions between these
genes (Harima and Kageyama, 2013, Niwa et al., 2011, Oginuma et al., 2008, 2010)
(modelled in (Oginuma et al., 2010, Tiedemann et al., 2012)). This discards the pos-
sibility that somite boundaries and polarity are formed from the opposite phases of a
fully slowed down and frozen oscillator, or even from the memorisation of the oscillation
phase upon passing a morphogen concentration threshold. As a consequence, the func-
tional relevance of the frequency gradient and clock phase for somitogenesis is again an
open issue.

Recently, two models were proposed that fundamentally differ from the above-
described clock-and-wavefront models (Beaupeux and François, 2016, Cotterell et al.,
2015, Lauschke et al., 2013). The first model proposes that two oscillators function in
the PSM, one which maintains a constant frequency and one which slows down towards
the anterior, so that the two oscillators shift out of phase in the anterior (Lauschke et al.,
2013). They proposed that this shift is detected by the rest of the gene regulatory net-
work and that when a certain phase difference is reached in the anterior PSM, a somite is
formed (Beaupeux and François, 2016). The frequency gradient is therefore crucial for
somite formation in this model. The other model, called PORD (Progressive Oscillatory
Reaction Diffusion model), revives the old idea of Meinhardt, but with different interac-
tions between the two genes (cell states in the Meinhardt model): one is an activator and
the other an inhibitor. This interaction resembles a Turing system, but additional input
from an FGF gradient prevents stripes from spontaneously emerging everywhere in the
tissue at the same time. Instead, the amount of activator and inhibitor oscillates and trav-
elling waves are formed, while oscillation arrest in the anterior is due to diffusion of the
repressor from the last-formed stripe (Cotterell et al., 2015). Thus, as in the Meinhardt
model, the wavefront of somite patterning arises as an emergent property, rather than as
a direct result of the FGF gradient. However, this model is capable of generating cell-
autonomous oscillations (as has been observed in vivo (Webb et al., 2016)), whereas in
the Meinhardt model, diffusion between cells was required.

While the new two-oscillator model suggests that the frequency gradient has an import-
ant function in somitogenesis (Beaupeux and François, 2016), it is important to consider
that not all animals generate segments under a frequency gradient. In the cephalochord-
ate Amphioxus (a close relative to vertebrates) for instance, somites are formed without a
travelling wave, and also evolutionary simulations so far yielded mechanisms without a
frequency gradient (François et al., 2007, ten Tusscher and Hogeweg, 2011). This shows
that a frequency gradient is not always necessary, and in chapter 2 we investigate under
what conditions it does and does not evolve.

10



1.3 Modes of segmentation

Above, we discussed several alternative models for somite determination, and it re-
mains to be seen which one best describes vertebrate somitogenesis. But is there just
one correct model, or could some models apply to one species, and others to another?
After all, while somitogenesis looks very similar in the different vertebrates, there are
also some notable differences. For example, the set of oscillating genes differs greatly
between the three main model organisms: zebrafish, chick and mouse (Krol et al., 2011).
More differences become apparent in experiments where RA, one of the morphogens
pervading the PSM, is removed: somitogenesis becomes asymmetric, but in a different
manner in all three species. We will explore these species differences in asymmetric
somitogenesis in chapter 3, to see if this allows us to discover potential differences in
somite determination mechanism.

1.3.2 Axis extension and segmentation

In many animals, the main body axis is formed through convergent extension: the
simultaneous narrowing and elongation of tissue. There are several processes that may
contribute to axis extension, such as oriented cell divisions, cell shape changes and cell
intercalation (Nikolaidou and Barrett, 2005, Tada and Heisenberg, 2012). In the latter
process, cells in one row move between the cells of another, reducing the number of cell
rows in one direction and increasing them in another (Fig. 1.2A).

The mechanism of axis extension, and its timing with segmentation, differs between
clades (section 1.3). In vertebrates, axis extension mostly precedes somitogenesis
(Bénazéraf and Pourquié, 2013, Tada and Heisenberg, 2012). The shape of the main axis
and some of the PSM is formed through collective cell migration and convergent exten-
sion, and later the tailbud produces the remainder of the PSM and neural tissue by adding
cells through additional ingression and divisions (depending on the species) (Bénazéraf
and Pourquié, 2013, Steventon et al., 2016, Tada and Heisenberg, 2012, Wilson et al.,
2009); once the somites become patterned, they no longer elongate significantly. In
short-germ insects (Tribolium) instead, elongation occurs by convergent extension that is
concomitant with segment formation (Nakamoto et al., 2015), which suggests that these
two processes could interact. Divisions occur everywhere along the anterior-posterior
axis with random orientation, making it unlikely that they contribute significantly to
elongation (Nakamoto et al., 2015). In Drosophila, axis extension follows well after
segmentation.

Convergent extension requires tissue polarity information to instruct the direction of
convergence and extension. In vertebrates, the Wnt signalling pathway and planar cell
polarity (PCP) pathway are involved in giving each individual cell an internal polarity
that is coordinated with the overall tissue polarity (Fig. 1.2B). In insects, the segmenta-
tion genes are required for instructing tissue and cell polarity for convergent extension
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(Benton et al., 2016, Irvine and Wieschaus, 1994, Mao and Lecuit, 2016, Paré et al.,
2014, Zallen and Wieschaus, 2004). How such tissue polarity is set up is a field of study
in itself, but we want to mention one general example, used for both plant and animal cell
polarity (Abley et al., 2013). This computational model showed how a cell-autonomous
polarity generating mechanism, combined with cell-cell coupling and a tissue polarity or-
ganiser, can generate coordinated tissue polarity (Abley et al., 2013).5 Models and exper-
iments on convergent extension have focused on tissues in which polarity is predefined,
addressing questions such as: what cellular mechanisms could explain the observed cell
movements? How robust is the mechanism to imperfect tissue polarity information, and
what is the effect of feedback of convergent extension on tissue polarity?

Figure 1.2. Mechanisms of convergent extension via cell intercalation A) General prin-
ciple of intercalation. One row of cells inserts itself between another, leading to extension of
the tissue in one direction and narrowing in another. B) Schematic representation of tissue
polarity. Each cell has its own internal polarity, which often manifests itself in different pro-
teins at the cortex (picture as in (Abley et al., 2013). C) Convergent extension via junctional
tension: the boundary indicated with arrows has increased actomyosin flow (as in (Honda
et al., 2008, Tada and Heisenberg, 2012). D) Convergent extension through cell elongation
(without lamellipodia pulling; as in (Honda et al., 2008)).

5This is reminiscent of some of the somitogenesis models, with cell-autonomous oscillators coupled for
synchronisation and directed by organising gradients.
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A number of mechanisms has been proposed that could drive convergent extension
and intercalation in different animals. For instance, in Drosophila, cell contacts with a
certain orientation have an increased actomyosin flow at the cortex (Bertet et al., 2004,
Rauzi et al., 2010); computational modelling showed that the increased tension gener-
ated by this flow is sufficient for cell intercalation (Honda et al., 2008, Rauzi et al., 2008)
(Fig. 1.2C). In the Xenopus notochord instead, cells become elongated in the direction
perpendicular to the direction of elongation (Tada and Heisenberg, 2012). It was pro-
posed that these elongated cells adhere more strongly at their elongated sides than at the
tips, which causes them to align their long axes and intercalate (Zajac et al., 2003). Other
models showed that protrusive activity and elongation by itself is sufficient for conver-
gent extension, as long as this elongation is restricted on two sides of the tissue (Weliky
et al., 1991) or if the elongation is alternated with cell relaxation (Honda et al., 2008)
(Fig. 1.2D). In other models instead, cell protrusions (lamellipodia or filopodia) actively
pull on other cells, dragging them closer and causing neighbour exchanges (Belmonte
et al., 2016, Brodland, 2006). One of these models also demonstrated that imperfect
tissue polarity (where cells have slightly deviating polarity with respect to the overall
tissue polarity) may still yield correct convergent extension; individual deviations from
the correct polarity are buffered by the feedback from surrounding cells (Belmonte et al.,
2016).

In short, convergent extension requires cell and tissue polarity information, and there
exist several alternative mechanisms which can translate this polarity into cell movement
and tissue reshaping. Existing models consider the tissue to be homogeneous: each cell
has its individual polarity, but all cells are identical and the tissue is not otherwise pat-
terned. However, we know that at least in insects, a segmented pattern is already present
during convergent extension. In Drosophila, it has been shown that precautions are in
place that prevent tissue reshaping from disrupting the segmentation pattern (Monier
et al., 2011). This suggests that in absence of such constraints, convergent extension
may have a profoundly disturbing effect on existing tissue patterns. On the other hand,
segmental patterning can be a source for the polarity information that instructs convergent
extension (Irvine and Wieschaus, 1994, Zallen and Wieschaus, 2004). We will investig-
ate the potential interplay between segmentation and convergent extension in chapter

5.

1.3.3 Evolution of segmentation

The evolution of segmentation in bilateral animals has been a topic of ongoing debate
for the last two decades, and it is currently unresolved whether the bilaterian ancestor
was segmented, or segmentation evolved independently two or three times (Balavoine,
2014, Balavoine and Adoutte, 2003, Budd, 2001, Seaver, 2003). Arguments in favour of
a segmented ancestor cite the similarities in segmentation dynamics in the three clades:
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the anterior-to-posterior progression and fact that all clades share genes involved in seg-
mentation (Balavoine, 2014, Budd, 2001). There are other clades which display partial
segmentation in just one or a few organs, so segmentation could be more widespread
than usually thought (Balavoine, 2014, Budd, 2001) (Fig. 1.3). Moreover, the fossil re-
cord has brought up very early examples of bilaterian-looking animals with segment-like
structures, supporting the idea of a segmented ancestor (Gold et al., 2015). However,
there are also considerable differences in the gene set used for segmentation, and the
overlap in the genes involved in segmentation could be due to a limited toolbox and con-
vergent evolution (Chipman, 2010). While the mechanism used in vertebrates and arth-
ropods looks similar, segmentation occurs in different tissue layers and with a different
temporal order of axis extension versus segmentation, as discussed above (section 1.3.2).
The mechanism in annelids differs even more (see section 1.3). Another long-standing
issue is the evolution of long-germ, simultaneous segmentation (Drosophila-like). This
segmentation mode likely evolved a number of times from short-germ, sequential seg-
mentation (Peel, 2004), but the evolutionary trajectory from one mode to the other is so
far unresolved.

Figure 1.3. Tree of bilaterians Adapted from (Hannibal and Patel, 2013). When also
pseudosegmented phyla (having some form of repetition along the main body axis) are taken
into consideration, segmentation is not a rare trait.
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Computational models addressing the evolution of segmentation collectively show that
only a few distinct classes of mechanism evolve for generating stripes, and the type
of mechanism that emerges depends strongly on the morphogen dynamics and the fit-
ness criterion (reviewed in (ten Tusscher, 2013)). Simulations with more specific fit-
ness criteria (precise number and location of stripes) and/or a static morphogen gradi-
ent yield hierarchical or emergent mechanisms that generate all stripes at roughly the
same time (François et al., 2007, Fujimoto et al., 2008, Kohsokabe and Kaneko, 2016,
Salazar-Ciudad et al., 2001a), with hierarchic networks being more robust to mutations
(Salazar-Ciudad et al., 2001a, ten Tusscher, 2013). Although these do not truly resemble
Drosophila-like simultaneous segmentation, their evolution for specific fitness criteria
is in line with the idea that a hierarchic network evolved secondarily, having to main-
tain the position of existing segments. Instead, simulations with a sweeping wavefront
of morphogen often evolve sequential segmentation using gene expression oscillations,
as the wavefront provides a timing mechanism that can transform the temporal oscil-
lations into a spatial pattern (François et al., 2007, ten Tusscher and Hogeweg, 2011).
Compared to alternative mechanisms that evolved, the sequential mode typically evolves
faster and is more evolvable and robust to gene expression noise than alternative mech-
anisms (François et al., 2007, Fujimoto et al., 2008, ten Tusscher, 2013, ten Tusscher and
Hogeweg, 2011).

In short, these latter simulations show that oscillatory sequential segmentation is a
likely and robust outcome of selection for segments. Although not conclusive, this sup-
ports the idea that sequential segmentation could have evolved independently in the three
clades. However, these results were obtained assuming that an anterior-to-posterior tim-
ing mechanism is already present in the shape of a retracting wavefront, which mimics
posterior growth with a morphogen gradient. Thus, the question remains whether se-
quential segmentation still evolves so readily if such posterior growth and a wavefront
also have to evolve. In chapter 4, we therefore extend an evo-devo model to evolve
segmentation and a growing axis. With this model, we investigate under what prior con-
ditions and selection pressures sequential segmentation with posterior growth becomes a
likely outcome of evolution.

1.4 Overview

This thesis consists of two parts of each two chapters. In the first section, we study
the clock to stripe transition, with emphasis on the more thoroughly studied process
of vertebrate somitogenesis. In the second part we investigate the developmental and
evolutionary interplay between segment patterning and axis formation. The chapters
divide each part into an evolutionary and a developmental question.
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Part I: clocks, waves and stripes Arguably, the most striking feature of vertebrate
somitogenesis is the travelling wave of gene expression, traversing the PSM from pos-
terior to anterior for each cycle of somite formation. As we discussed in section 1.3.1, a
number of functions has been proposed for the frequency gradient that causes this trav-
elling wave. In chapter 2, we put some of these proposals to the test by running evol-
utionary simulations with realistic vertebrate tissue properties such as posterior growth
and a morphogen gradient (using the framework of (ten Tusscher and Hogeweg, 2011)).
We then investigate under what circumstances a frequency gradient evolves.

From a distance, somitogenesis looks very similar in all vertebrates. When instead
somite symmetry is disrupted due to the removal of RA, the resulting asymmetry looks
different in each of the three most frequently studied model species – zebrafish, chick
and mouse. In chapter 3, we take a simple phenomenological model (as used in (Morelli
et al., 2009)) to study these different asymmetric phenotypes. We then adapt this model
based on experimental data on different species, to investigate whether differences in
the somite formation mechanism can explain the observed differences in the asymmetric
phenotype.

Part II: clocks, stripes and shapes In chapter 4, we return to the observation that
most animals use a superficially similar looking segmentation process involving posterior
addition of segments. We investigate what factors could have caused this prevalence of
sequential segmentation by extending the evo-devo model with regulation of divisions,
to evolve segmentation and axis formation at the same time. We vary the presence of a
persistent tissue polarity signal (in the form of a posteriorly emanating morphogen) and
additional selection pressures, and assess under what conditions sequential segmentation
is most likely to evolve.

In section 1.3.2 we discussed how convergent extension relies on tissue patterning and
polarity. Previous models assumed that the tissue undergoing convergent extension is
homogeneous, each cell having the same identity as its neighbours. Since convergent
extension takes place in segmented tissue in some species, the cell rearrangements may
interfere with this pattern. We investigate whether different convergent extension mech-
anisms can disrupt a segmented tissue pattern – and how this could be prevented – in
chapter 5. Incidentally, we find a new mechanism to generate convergent extension.

These chapters cover a wide variety of questions concerning segmentation. In chapter

6 we will summarise and integrate our findings, discussing their implications for our
understanding of body axis segmentation and for promising directions of future work.
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Part I

Clocks, waves and stripes
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Chapter 2. Wavefront dynamics and clock evolution

Abstract

The predominant mode of segmentation in all three segmented animal clades is sequential
segmentation, where segments are formed in an anterior to posterior manner from a pos-
terior undifferentiated zone. In short-germ insects, segments form close to the posterior
zone using a seemingly simple genetic oscillator. In contrast, vertebrate segmentation is
characterised by a complex oscillator that generates travelling waves across an extended
presomitic mesoderm (PSM) beyond which segments are laid down. These particular
properties of vertebrate segmentation have been suggested to contribute to robustness,
but this hypothesis has thus far not been thoroughly tested.
Here we extend previously used computational models for the evolution of segmentation
to investigate factors that influence the evolution of segmentation clock properties. We
include an explicit posterior division zone coupled with a realistic, decay-driven morpho-
gen gradient. Furthermore, we vary the presence of cell-cell signalling, gene expression
noise and the developmental time available for segment patterning. The mechanisms that
evolve in our simulations are compared in terms of oscillator complexity, oscillator dy-
namics and evolutionary trajectories.
We find that oscillatory segmentation evolves significantly faster in the presence of a
steep morphogen gradient, and results in qualitatively different evolutionary outcomes
compared to segmentation evolved with a shallow gradient. In absence of noise, under a
steep morphogen gradient often damped oscillators evolve. In contrast, for shallow gradi-
ents persistent oscillators dominate, and sloped frequency profiles resulting in propagat-
ing waves regularly evolve. Still, upon changing morphogen decay, we observe ready
evolutionary adaptation to the altered gradient, including associated oscillator character-
istics. Incorporating gene expression noise leads to a substantial increase in the evolution
of persistent oscillators for steep morphogen gradients and of sloped frequency profiles
for shallow gradients, supporting their roles in increasing developmental robustness. Sur-
prisingly, we find that oscillator complexity is not correlated with oscillator slowing,
suggesting that these properties may not have evolved simultaneously. Instead, oscillator
complexity may have evolved first under a steep morphogen gradient, in response to the
requirement for a robust, persistent oscillator; later a transition to shallow morphogen
gradients may have led to the evolution of a frequency gradient.
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2.1 Introduction

2.1 Introduction

Evolutionary developmental biology aims to understand how the complex develop-
mental programs arose that shape multicellular organisms, and why particular mechan-
isms evolved to create the observed gene patterns and tissue dynamics. Segmentation,
the division of the body axis into repeated units, is one of the most intensely studied pat-
terning processes, both on the level of the generating mechanism and from the broader
evolutionary perspective; it is considered a major evolutionary innovation. There are
only three lineages of animals with a clearly segmented body plan: annelid worms, arth-
ropods and chordates (Davis and Patel, 1999, Peel and Akam, 2003). It is still a major
unsettled issue whether the common ancestor of these three lineages had a segmented
body plan which was subsequently lost in the majority of lineages, or the three segmen-
ted lineages evolved segmentation in parallel (Balavoine and Adoutte, 2003, Budd, 2001,
Chipman, 2010, Couso, 2009, Davis and Patel, 1999, Minelli and Fusco, 2004, Seaver,
2003, Tautz, 2004). While similarities in used genes have been taken as support for a
single origin, an alternative case can be made for the likelihood of parallel recruitment
due to the limited size of the developmental toolkit (Chipman, 2010). Parallel evolution
is further supported by specific differences in the segmentation mechanism used in the
three different lineages.

In most segmented animals, segments are generated from a posterior zone and laid
down in a regular anterior-posterior sequence. Sequential segmentation has been stud-
ied in most detail in vertebrates, where somites emanate sequentially from a posterior
undifferentiated zone, the presomitic mesoderm (PSM). A wavefront retreating across
the PSM transforms oscillatory gene expression into a spatial pattern of segments (for
review, see e.g. (Hubaud and Pourquié, 2014)). Most arthropods appear to deploy a sim-
ilar sequential segmentation mode although the molecular details underlying oscillations
and the transformation to segments are still poorly understood. While vertebrates and
sequentially segmenting arthropods specify segments before the intra-segmental fates of
cells is laid down, in annelids this order is reversed. Thus, while the segmentation pro-
cess in annelids is also sequential, cell lineages with a different future fate appear to
undergo distinct parallel sequential segmentation processes before fusing into segments
(Shankland and Seaver, 2000).

To unravel the evolutionary processes that have shaped these sequential segmentation
programs, several complementary approaches exist: bioinformatic comparisons, experi-
mental developmental comparisons and in silico evolutionary simulation studies. While
the first two approaches are essential for establishing how organisms pattern their body
and how this process has diversified across different lineages, they are less suited for
answering why these particular mechanisms evolved. With evolutionary simulation we
can rerun the evolutionary process again and again to determine the likelihood of specific
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evolutionary outcomes, and which factors may bias evolution towards a certain solution.
This approach is also useful for assessing the probability of parallel evolution.

Earlier evo-devo simulation studies demonstrated that the oscillation-driven sequen-
tial segmentation observed in vertebrates, arthropods and annelids, readily evolves from
scratch (François, 2014, François et al., 2007, ten Tusscher, 2013, ten Tusscher and Ho-
geweg, 2011, Vroomans et al., 2016), provided that a posterior signalling centre has
previously evolved (Vroomans et al., 2016). Furthermore, these studies have shown that
this type of segmentation mechanism should be expected to evolve due to its increased ro-
bustness and future evolutionary potential relative to alternative strategies. However, thus
far the evolutionary forces that have shaped particular more detailed aspects of sequential
segmentation have remained unresolved. In vertebrate segmentation, the oscillations are
generated by a complex regulatory network of three coupled oscillator motifs (Aulehla
and Pourquié, 2008, Dequéant et al., 2006, Goldbeter and Pourquié, 2008). One can
speculate that coupling multiple oscillators contributes to the robustness of oscillation
period by generating redundancy. Similarly, so-called kinematic waves of gene expres-
sion have been observed that traverse the unsegmented region from posterior to anterior
in both vertebrate and arthropod segmentation. This dynamics reflect the gradual slow-
ing down of oscillations before they arrest into segments (Dequéant and Pourquié, 2008,
Jaeger and Goodwin, 2001, Kaern et al., 2000, Palmeirim et al., 1997). Again, one can
speculate that such a sloped oscillation frequency profile enhances the robustness of the
segmentation process (El-Sherif et al., 2014). Thus far, these hypotheses have not been
rigorously tested. As a consequence, it remains unclear why these particular properties
of sequential segmentation evolved.

Here, we take the first steps required to answer these questions. First, we develop a
more detailed modelling framework for studying the evolution of sequential segmenta-
tion, to enable the evolution of more complex oscillators and different types of frequency
profiles. Rather than running a moving wavefront across a preformed tissue, we expli-
citly model a posterior growth zone characterised by cell division and high expression
of the morphogen gene. Due to slow decay of the morphogen protein in cells outside of
the growth zone a decay-driven morphogen gradient is generated. We have previously
demonstrated that the presence of such a posterior signalling centre and gradient forms a
major determinant for the evolution of sequential segmentation (Vroomans et al., 2016).
In this study, we vary the rate of decay to test the impact of gradient length scale and
slope on the type of segmentation that evolves. Additionally, we investigate the influence
of gene expression noise and the developmental time available for segment patterning.
To efficiently study for large numbers of simulations whether or not complex oscillators
or a sloped frequency profile evolves, we build an automated alternative to manually ana-
lysing the details of network topologies and dynamics, as was done in previous studies.
Our analysis pipeline determines the number and size of loops present in the evolved

22



2.2 Methods

networks, as well as performing a detailed Fourier analysis of the oscillations in gene
expression as a function of morphogen concentration.

We demonstrate that oscillation-driven sequential segmentation with complex multi-
loop networks, and / or a sloped frequency profile that generates kinematic waves, auto-
matically evolves in a subset of simulations. We find that different morphogen decay
rates, resulting in differently sloped morphogen gradients, lead to somewhat different
outcomes, which are amplified by the addition of noise. Simulations incorporating slow
decay resulting in shallow morphogen gradients often lead to the evolution of persist-
ent oscillations, sloped frequency profiles and complex networks with many and large
regulatory loops. In contrast, simulations with fast morphogen decay resulting in steep
gradients evolve sequential segmentation faster, requiring a slightly smaller genome and
simpler network with fewer loops. However, evolutionary simulations with a steep gradi-
ent resulted more often in damped oscillations. A disadvantage of these damped oscil-
lators is their sensitivity to perturbations, and their reduced evolutionary potential for
developing a larger body with more segments.

To perform a preliminary assessment of the functional significance of network com-
plexity and sloped frequency profiles we performed evolutionary transition experiments,
in which individuals evolved under a steep morphogen gradient were transferred to a
situation with a shallow gradient and vice versa, after which evolution continued. The
increases or decreases in genome size, loop numbers and occurrence of persistent os-
cillators and sloped frequency profiles match our earlier results, suggesting that these
properties are not evolutionary neutral but tailored to the specific morphogen profile. Fi-
nally, we find that sloped frequency profiles may have an important role in mitigating the
adverse effects of gene expression noise. In the future we aim to use the methodology de-
veloped here to further investigate the evolutionary forces that have driven the formation
of complex oscillatory networks and sloped frequency profiles.

2.2 Methods

2.2.1 The model

General setup

We use a individual based model of a population of organisms evolving on a lattice, as
has been applied before to evolution of segmentation and domains (ten Tusscher and Ho-
geweg, 2011) (Fig. 1A). Each organism has a so-called “pearls-on-a-string” genome con-
sisting of genes (transcription factors) and upstream regulatory regions with transcription
factor binding sites (TFBS) (Crombach and Hogeweg, 2008). Furthermore, they consist
of a one-dimensional row of cells which starts out small and grows during the course
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of the individual’s development, instead of starting at full length as in previous models
(for review, see (ten Tusscher, 2013)). The individuals reproduce in a fitness-dependent
fashion, with fitness dependent on the number of segments in their final gene expression
pattern.
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Figure 2.1. Overview of the model. A)The developing individuals live on a 2D lattice. Each
individual consists of a row of cells, of which the posterior-most cell divides at regular inter-
vals. Within the growth zone, the morphogen (in blue) is maintained at a high concentration;
it decays in cells outside of this zone. The genome of the individual codes for a network of
regulatory interactions, which determines the spatiotemporal dynamics of the proteins within
each cell (see D). B) The gradients resulting from the different morphogen decay rates (d)
used in our simulations. The lambda indicates the position (or time) at which the morphogen
concentration is half-maximal, i.e. 50: λ = ln(2)/d. C) The initial conditions for each new
individual at the start of its development. There is a growth zone with high morphogen, and a
’head’ region without morphogen. D) At the end of development, the expression of the seg-
mentation gene is averaged over a number of timesteps, and from this the segment boundaries
are determined. E) The mutational operators acting on the genome.

Individuals

genome, network and genes The genome codes for a gene regulatory network. The
genes in the genome form the nodes of the network; the set of TFBS upstream of
each individual gene in the genome dictate the incoming regulatory edges of the GRN
(Fig. 2.1A). Outgoing edges follow from genes matching the type of the TFBS in front
of another gene. The regulatory interactions between genes can be repressive (strength
-1) or activating (strength 1). The network governs gene expression dynamics and sub-
sequent protein levels. Gene expression is modelled with ordinary differential equations
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as shown in eq. 2.1:

dGi

dt
= Max(

An
j

An
j +Hn

) ∗Πk=1(
Hn

Ink +Hn
) ∗ E − δ ∗Gi (2.1)

Transcription of gene i is determined by the activating genes Aj (j = 1...l) with the
highest expression (a max function), resulting in a so-called activating OR-gate, while
repressive inputs Ik (k = 1...m) are multiplied, resulting in a repressive AND-gate (l
and m are the total number of activating and repressing inputs for gene i). Note that
these choices are somewhat arbitrary, as for both activating and repressive TFs AND as
well as OR or even different types of integration may occur; however, the main point here
is to incorporate at least partially the highly complex, non-linear integration of TF inputs
into gene expression levels. E is the maximum expression level; δ is the degradation rate;
H is a Hill constant, the transcription factor concentration level at which half-maximal
activation or repression occurs; and n is the Hill coefficient governing the steepness
of the transition from low to high gene expression depending on transcription factor
concentrations.

There are 16 types of genes, indicated with a number from 0 to 15.
Gene 0 is the morphogen: it is not regulated by any of the other genes, but instead is
set to high expression in the cells of the growth zone, while decaying with a predefined
rate in the rest of the embryo (Fig.1B). We run simulations with either a large or a small
morphogen decay rate, yielding a steep or a shallow morphogen gradient, respectively.
Gene 1 and gene 2 are signalling genes, in a subset of simulations. Both function
via direct membrane bound ligand induced signalling (e.g. Delta-Notch signalling). As
a consequence they can only affect gene expression dynamics of directly neighbouring
cells. Note that expression of these signalling genes does not affect the cell expressing
the gene itself.
Gene 5 is the segmentation gene, whose final pattern after development determines the
fitness of the organism.

gene expression noise In a subset of simulations, we implemented gene expression
noise, as follows. First, we computed the expected gene expression rates based on
Eq. 2.1. Next, we computed the actual gene expression rate by sampling from a Gaussian
distribution around the expected gene expression rate. Specifically, we assume a Gaus-
sian distribution with a mean equal to the computed expected gene expression rate Rexpr

(µ = Rexpr, σ = 0.07 ∗ Repxr), and a standard deviation of 0.07 times this mean. Note
that by scaling the standard deviation with the mean, the noise which is defined as the
standard deviation divided by the mean, is kept constant independent of the mean gene
expression rate. We avoid negative gene expression rates by capping any negative gene
expression rates due to noise to zero: Ractual = Max(0, Rexpr + noise).
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developmental dynamics Individuals start their development with a short row of 14
cells, where 5 cells form the primordial “growth zone” in which the morphogen concen-
tration is high; in the remaining 9 cells (the "head"), the morphogen is absent (Fig. 2.1C).
The other genes have an expression level of 0 in all cells. This means that no gene ex-
pression will occur in the anterior-most 9 cells. We ignore the developmental processes
generating the head part of the body and their evolution, and focus solely on the devel-
opmental processes governing formation of more posterior body parts and their evolu-
tionary history. The posterior-most cell of the growth zone divides at regular intervals,
pushing the other cells forward so that they eventually move out of this zone. Once a cell
leaves the growth zone, the morphogen protein starts decaying. As a result, a gradient of
the morphogen is formed due to the age difference of the cells (Fig. 2.1A,B). (The 4 cells
in the growth zone that do not divide are there for cosmetic reasons; it makes it easier to
see the dynamics in the growth zone on a time-space plot.) Throughout development, the
concentrations of the other proteins (i.e. all except the morphogen protein) are updated
according to the genetically specified network interactions (Eq. 2.1). The posterior cells
stops dividing after 120 divisions, after which developmental dynamics continue for a
while longer such that also the youngest cells reach a low morphogen concentration and
can converge on a stable gene expression pattern.

fitness evaluation By the end of development, the expression pattern of the segmenta-
tion gene is evaluated to determine the number of segments formed outside the growth
zone (Fig. 2.1D). Segments should be at least 7 cells wide, and boundaries between seg-
ments should consist of a clear transition of the expression of the segmentation gene
from a high to a low level, or vice versa, within 5 cells (similar to earlier definitions
(François et al., 2007, ten Tusscher and Hogeweg, 2011)). Given that the tissue grows
out to be 134 cells, of which 9 form the head segment and 5 form the growth zone, the
maximum number of segments that can be formed is 18. The number of well-formed
segments (i.e. fulfilling the above requirements) determines an individual’s fitness. In
addition, some penalties are applied. First, we require that at least one gene of each type
is present in the genome; if this requirement is not met, the individual is not allowed to
reproduce. Second, too-narrow segments are penalised. Third, small fitness penalties are
used for gene and TFBS numbers in order to prevent excessive genome growth. Finally,
when determining the number of segments, rather than considering the expression of
the segmentation gene at the last timestep of development, we average expression of the
segmentation gene over the last 100 developmental steps. This averaging helps ensure
temporally stable segmental patterning, as it will not reward oscillatory segmentation that
fails to converge on a constant spatial pattern. To further ensure stability of the final de-
velopmental pattern we apply an additional fitness penalty for the amount variance of the
pattern from the average (pattern instability) within these final 100 developmental steps.
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The fitness then becomes emax(0,F ) − 1, where F is:

F =nr good segments

− nr narrow segments

−G ∗ gene nr

− T ∗ TFBS nr

− U ∗ nr unstable cells

(2.2)

See table 2.2 for parameter values.

Evolution

initial conditions, mutations and simulations The population is initialised with 50
identical individuals. The population resides on a lattice of size 30x30, imposing an
upper boundary of 900 individuals to the population size. The genome of the initial indi-
viduals contains a single copy of each gene, in randomised order and with an average of 2
TFBS or random type upstream. Individuals compete in a 7x7 neighbourhood for the op-
portunity to reproduce into an empty spot (this done for computational efficiency, and the
realism of local competition). An individual’s chance to reproduce is proportional to its
fitness divided by the sum over the fitness values of itself and the other individuals neigh-
bouring the empty position: Pi =

fi∑
nb
j=1 fj

. Death occurs with a constant probability d,

and individuals move on the lattice via Margolus diffusion.

Upon reproduction, the genome is mutated via duplications and deletions of both genes
and TFBS, with a per-element probability (Fig.1E). In addition, TFBS may also mutate
their type (which gene binds) and weight (activating or repressing), and new TFBS may
appear de novo as an innovation. Gene duplication also copies the associated TFBS,
and results in multiple genes of the same type. The expression of all genes of the same
type therefore contributes to the concentration of a single protein. Note that since we
do not include mutations that change gene type, gene duplication cannot be followed
by subsequent divergence. In order to simplify our model and decrease the number of
different mutation rates in our simulations we do not evolve maximum gene expression
rates, protein decay rates or TF activation and deactivation thresholds (parameters E, D
and H in equation 1) similar to the approach taken in (ten Tusscher and Hogeweg, 2011).
We run 8 series of 60 simulations, varying between a high and low morphogen decay
rate, the presence and absence of CCS and/or gene expression noise, and the duration of
the relaxation period.
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Chapter 2. Wavefront dynamics and clock evolution

2.2.2 Analysis pipeline

It is impossible to derive the patterning strategy deployed by an evolved network from
mere network architecture. Even for small networks evolved to the simple task of pat-
terning a single stripe along the body axis, identical network architectures may lead to
different patterning dynamics for different regulatory parameter settings (Schaerli et al.,
2014). For these small networks it may still be feasible to determine the patterning
strategy by examining the expression dynamics of individual genes; this strategy however
will not provide a solution for larger networks evolved towards more complex patterning
tasks, such as the one considered here. As a consequence, mostly individual case studies
were previously used to unravel the evolved developmental mechanism, analysing only
a few network architectures and their gene expression dynamics in detail (Beaupeux and
François, 2016, François et al., 2007, Salazar-Ciudad et al., 2001a,b, ten Tusscher and
Hogeweg, 2011, Vroomans et al., 2016). However, if we aim to study the evolution-
ary forces driving evolution of complex oscillator networks and / or of sloped oscillator
frequency gradients, large numbers of simulation outcomes need to be assessed to see
which evolutionary forces may contribute to the evolution of these properties. Detailed
manual analysis of each individual simulation outcome would be prohibitively slow. Fur-
thermore, a different type of approach is needed to determine the nature of the evolved
segmentation oscillator, i.e. whether it generates damped or persistent oscillations, and
whether oscillation amplitude or period changes gradually or abruptly as a function of
morphogen concentration. Therefore, we developed an automated analysis pipeline that
can determine measures of network complexity and oscillatory frequency profiles for
large numbers of simulations.

Complexity Analysis

Our pipeline starts by extracting from each simulation the genome of a single fit indi-
vidual present in the population at the end of evolution (Fig. 2.1A). Because an evolved
genome consists partly of redundant interactions, we first prune the genomes via a re-
peated process of trying to remove genes and binding sites in the genome, while keeping
the final spatial expression pattern of the segmentation gene the same (ten Tusscher and
Hogeweg, 2011). We will refer to these pruned genomes and networks as core genomes
and networks, as they embody the essential core necessary to generate the segmentation
pattern. To obtain measures for the complexity of the evolved networks we determine
genome size (number of genes and TFBS), the number of regulatory loops present in the
network encoded by the genome, the size (nr of genes) of these loops, and the number of
positive and negative feedback loops (Fig. 2.1B). All measures are obtained for the core
genomes and networks.
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2.2 Methods

Fourier frequency profile analysis

Since the model incorporates posterior growth, we expect a significant part of the evol-
utionary runs to evolve a vertebrate-like solution, transforming temporal gene expression
oscillations into a spatial segment pattern (Vroomans et al., 2016). To determine the pre-
cise nature of the oscillations, we apply a Fast Fourier Transform (FFT, C library fftw3.h)
to the gene expression dynamics and quantify how the amplitude and frequency of os-
cillations changes as a function of morphogen concentration. Since each cell leaving
the posterior growth zone experiences the same morphogen decay, such an analysis will
reveal both the temporal oscillation dynamics of an individual cell as well as the spatial
oscillation profile across the tissue at a single time point. This method will therefore al-
low us to determine whether, in case of persistent oscillations, a sloped frequency profile
is present and kinematic oscillation waves are to be expected.

In principle, one could apply Fourier analysis directly to the gene expression dynam-
ics of a cell as it leaves the growth zone and experiences morphogen decay. However,
cells leaving the growth zone undergo only few oscillations in a short amount of time,
and there is only a limited number of timepoints per individual morphogen concentra-
tion level. This makes it hard to extract the precise oscillatory dynamics as a function
of morphogen concentration, especially when the morphogen decays rapidly. Further-
more, such an analysis would not be able to distinguish whether, at any given morphogen
concentration, oscillations are stable or damped. Therefore we decided to obtain longer
time series of gene expression by running the evolved networks multiple times, each
time with a different but constant morphogen concentration, using a linear set of con-
centration levels occurring in the morphogen gradient (Fig. 2.2A). This ensures that the
same amount of data and detail is available for oscillators evolved under fast and slow
morphogen decay.

After developing this series of gene expression dynamics for different morphogen con-
centrations, we apply a Fourier analysis for each individual gene for each of these differ-
ent time series (Fig. 2.2A). Subsequently we select the gene oscillating with the largest
amplitude. For this gene, we then plot the frequency distributions (amplitude per fre-
quency) for each morphogen concentration next to each other in a 2D heatmap, creating
the so-called “frequency profile” (Fig. 2.2A). We give examples of the resulting plots in
figure 2.2C, first column. Note how the frequency of the oscillations may or may not
change with the morphogen concentration. A side effect of using this Fourier analysis is
that, in addition to detecting the frequency of the genetic oscillator as the dominant mode,
it also detects one or more so called eigenmodes of this frequency, as can be clearly seen
in Fig. 2.2C, second row. These eigenmodes have no particular biological meaning.
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Figure 2.2. Explanation of the Fourier analysis procedure. A) We run the evolved net-
work for 1800 steps with several, fixed concentrations of the morphogen. For every gene, we
take the Fourier transform of the temporal gene expression dynamics to find the gene’s oscil-
lation frequency for that particular morphogen concentration. We plot the Fourier transform
data of all concentrations together in one heatmap, where the colour intensity represents the
amplitude at every frequency for every concentration. See also C for a “real-life” example.
(...)
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2.3 Results

Figure 2.2. (...) B) For the network run at the highest morphogen concentration (representing
the growth zone), we also perform a sliding-window analysis: here, we take subsets of the
time series generated as in A, and apply the Fourier transform to every window to visualise
the change in frequency and amplitude over time in the growth zone. The rest of the procedure
is the same as in A. C) Examples of frequency profiles from real simulations. The plots in
the left column are generated as explained in A, and those on the right as in B.

To investigate whether the frequency or the amplitude of oscillations changes in the
growth zone, we also apply this Fourier analysis to different subsections of the time
series for the high morphogen concentration occurring in the growth zone (Fig. 2.2B).
The procedure for making the frequency profile heatmap remains the same, but now the
x-axis represents developmental time rather than morphogen concentration. Examples
can be found in figure 2.2C, second column.

Oscillator classification

To compare the evolutionary outcomes arising for the different decay rates and hence
morphogen gradient shapes, we would like to classify the obtained frequency profiles
into the three different categories illustrated in Fig. 2.2C. First, we distinguish between
damped and persistent oscillators depending on the fourier profile obtained from the
growth zone. This is done by simple visual inspection of the profile, determining whether
or not oscillations of non-zero amplitude persist throughout the time window. Next,
within the category of persistent oscillators we determine whether a frequency profile is
constant across the morphogen gradient or rather has a sloped appearance. This clas-
sification was formalised as follows: we measure the maximum oscillatory frequency
occurring for the high morphogen concentrations in the posterior as well as the min-
imum frequency of the oscillations just prior to the ceasing of oscillations. Next we
determine the difference between these oscillation frequencies, indicating the extent of
oscillator slowing across the morphogen gradient. We choose a particular threshold value
for this frequency difference (0.02). For frequency differences larger than this threshold
we classify the oscillator as one with a sloped frequency profile, for smaller frequency
differences we denote it as an oscillator with an approximately constant frequency pro-
file.

2.3 Results

2.3.1 Evolutionary outcomes

To test how the length scale and slope of the morphogen gradient influences the evolution
of segmentation, we ran two sets of 60 simulations: one with a small and one with a large
morphogen decay rate, leading to shallow and steep gradients respectively. For both sets,
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Chapter 2. Wavefront dynamics and clock evolution

nearly all simulations manage to evolve a tissue pattern with 10 or more segments (59 of
60 simulations with a shallow gradient, 60 out of 60 simulations with a steep gradient,
Fig. 2.3A). Of these successful simulations, 10 shallow-gradient and 11 steep-gradient
simulations manage to evolve the maximum number of 18 segments (the median nr of
segments is 16 for both cases). Typical space-time plots for both kinds of gradient are
shown in figure 2.3B.

Figure 2.3. Summary of simulation results. A) Histograms of the number of segments
formed in simulations with shallow and steep gradients. B) Examples of the resulting space-
time plots from an individual at the end of a simulation. The posterior growth zone on the
right is anchored, the other cells shift position when the tissue grows. The colour reflects the
cell type, defined by the expression levels of all genes within a cell (see box at end of chapter).
Note the regular alternation of gene expression in the posterior growth zone. C) Left: a sim-
plified representation of the gene regulatory networks that evolve in our simulations; right;
an example of an evolved network (pruned, see Methods). The clock that generates gene
expression oscillations is indicated in blue, the bistable switch in red. D) A simplified rep-
resentation of the phase space of the evolved networks. At high morphogen concentrations,
gene levels oscillate (blue). These oscillations make the network state alternate between the
basins of attraction of the two stable states that emerge for a low morphogen (red).
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2.3 Results

The evolved networks generally contain a genetic oscillator that consists of multiple neg-
ative feedback loops combined with a bistability motif. One or more of these feedback
loops are regulated by the morphogen, so that oscillations occur for high morphogen
concentrations but cease below a certain threshold level of morphogen (illustrated in
figure 2.3C). Below this threshold, the expression of the segmentation gene becomes
stabilised by the bistability generating positive feedback loop.

Due to the non-linearity of gene expression regulation in our model, the positive feed-
back on the segmentation gene generates a bistability so that either high or low expression
can be maintained. While the morphogen concentration is high, both the high and the low
state are unstable and the network can keep oscillating between the two regions that form
the future basins of attraction of these states (Fig.2.3D). When morphogen concentrations
drop, oscillations terminate, the two states become stable and the network converges to
one of them. Whether it converges to high or low segmentation gene expression depends
on the phase of the cycle at which oscillations stopped. Thus, the bistability allows for a
translation of oscillations into a stable segmented gene expression pattern. This structure
is similar to those in (ten Tusscher and Hogeweg, 2011), although the pruned networks
tend to remain somewhat larger. Variations on this general theme do occur, for example
the segmentation gene and the genes in the positive feedback loop may be part of a negat-
ive feedback loop of the oscillator. In other variants the inhibition by the morphogen may
be indirect. Still, the overall mechanism generating morphogen dependent oscillations
and translating them into a stable segmentation pattern is the same.

2.3.2 Fourier analysis as a signature of gene expression dynamics

reveals spontaneous evolution of travelling segmentation waves

We need to validate whether the computed frequency profiles of the Fourier analysis
correctly reflect the gene expression dynamics that actually occur during development.
To perform this validation, we show the tissue dynamics in a number of different ways for
three cases with qualitatively different frequency profiles in figure 2.4A. First, we show
the frequency profile obtained using our Fourier analysis method. (Fig. 2.4A). Next, we
show developmental space-time plots of cell types (Fig. 2.4B) and of segmentation gene
expression (Fig. 2.4C). We also show snapshots of the spatial expression pattern of the
segmentation gene at different time points (Fig. 2.4D Supp. Video 1-3), and line graphs
showing the spatial expression pattern of the segmentation gene for different time points
(Fig. 2.4E).

To discuss gene expression and oscillatory dynamics, and whether or not actual dy-
namics and the dynamics as reflected by our Fourier analysis correspond, we introduce
the concept of a transient. This is the region or period of time in which the cells are
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no longer in the growth zone but have not formed a stable segment yet. Clearly, indi-
viduals with a slow morphogen decay and shallow gradient have a longer transient, with
segment formation occurring later and further away from the posterior end of the body
(Fig. 2.4A,A’ vs. A"). Because a longer transient makes developmental dynamics easier
to interpret by eye, we will focus on results from evolutionary simulations with a shallow
gradient for the validation of our Fourier frequency profile.

In the first column, the computed frequency profile clearly shows a slope, implying
the occurrence of slower oscillations for lower morphogen concentrations (from here on
called a sloped frequency profile).

Figure 2.4. Frequency profiles correctly predict tissue-scale dynamics. A-A") Space-
time plot of celltypes: each colour represents a unique combination of gene expression values
within each cell. Note how the tissue grows in the first half of development. B-B") Space-
time plot of the segmentation gene expression. C-C") Line graphs depicting the expression
level of the segmentation gene at two different timepoints (indicated by the colour). Cell 0
is the dividing cell in the growth zone. D,D’) Frequency profile of gene 5. D") Frequency
profile of gene 10 (the strongest oscillating gene) E, E’) Snapshots of the tissue dynamics for
gene 5, or E") gene 10. The anterior ends (indicated by the black bars) are aligned for greater
clarity. The pictures are taken 12 steps apart.
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In the space-time plots we can see this slowing down from the bent shape of the waves
of segmentation gene expression. In the snapshots of segmentation gene expression in
figure 2.4D we see that every segment starts as a travelling wave from the posterior,
and becomes narrower and more strongly expressed as it arrives at the anterior. Thus, a
sloped frequency profile translates to travelling waves across the tissue, much like those
observed in vertebrate development.

In contrast, the individual used as an example in the middle column of figure 2.4 (A’-
D’) has a constant frequency profile, implying that oscillations have a constant frequency
for a range of morphogen concentrations and then suddenly cease to exist for lower
morphogen concentrations (a constant frequency profile). Both developmental space-
time plots and snapshots of segmentation gene expression dynamics show that indeed,
most of the tissue oscillates synchronously and that only the very anterior end shows a
minor deviation of this dynamic immediately prior to segment stabilisation. Based on
our frequency plot we can deduce that in this small region, the cells are already in a
non-oscillatory regime, converging towards one of the two stable states that allow for a
segmented pattern. Note that this is different from the individual in the left column with
travelling waves, where the anterior tissue that is out of sync with the posterior end is in
a regime of sustained but slower oscillations.

Finally, in the right column of figure 2.4 (A”-D”) we display an individual whose fre-
quency profile only shows oscillatory dynamics for the high morphogen concentrations
that occur in the posterior growth zone. The sliding-window analysis of these growth
zone oscillations reveals that these oscillations are damped, reducing their amplitude
over time (a “damped frequency profile”). This is confirmed by both the developmental
space-time plot and the snapshots of segmentation gene expression dynamics, which
show a clear decrease in oscillation amplitude in the growth zone.

In all 3 cases illustrated above, there is a clear correspondence between the develop-
mental dynamics as suggested by the computed Fourier frequency profile and the actual
observed developmental dynamics. We therefore conclude that the Fourier frequency
analysis is a valid method to compute and categorise in an automated manner the type of
oscillatory dynamics produced by evolved networks. Note that while the above examples
are easily distinguishable, clear-cut cases, unfortunately not all computed frequency pro-
files are that easy to interpret or fall into these three clear categories. Some profiles have a
very modest slope, in other cases oscillations extend beyond the growth zone but for only
a limited part of the entire morphogen concentration range, in yet other cases oscillations
may be damped for the high morphogen concentrations in the growth zone yet persistent
for a range of lower concentrations (Supp. Fig. S2.1). The difference between the tissue
dynamics of the different profiles then becomes harder to see, as they span a smaller
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region. Still, we maintain that also for these more complicated cases the frequency profile
reliably reflects the actual oscillatory developmental dynamics.

2.3.3 A shallow gradient more often yields sustained oscillations and

sloped frequency profiles

Comparing figure 2.4A and A’ to A” illustrates that the transient (where cells have
left the growth zone but have not yet stably formed a segment) is longer for shallow
morphogen gradients than for steep gradients. After all, the transition from oscillations
to segments occurs at low morphogen concentrations, which are reached later and fur-
ther away for shallow gradients. Thus, an interesting question is whether this spatially
and temporally extended transient has evolutionary consequences in terms of network
complexity and types of oscillatory dynamics that evolve. Indeed, when we classify all
simulations into the three broad categories as displayed in figure 2.4 (see also Methods),
the simulation set with a shallower posterior gradient has a lower fraction of profiles with
only damped oscillations, and a higher fraction of sloped frequency profiles (Table 2.1),
while the two sets contain a similar number of simulations with a constant frequency
profile. To test the robustness of these results, we measured the frequency difference
within a profile (Fig. 2.5), rather than categorising the profiles using somewhat arbitrary
cutoffs to distinguish sloped from fixed profiles. The distribution of these frequency dif-
ferences makes clear that not only do runs with shallower gradients more often have a
sloped profile, but they also tend to have a larger frequency difference across their profile
(Fig. 2.5).

The difference in the number of simulations with damped oscillation profiles is intuit-
ively understandable. In the case of persistent oscillations, cells oscillate with a constant
amplitude, which causes them to alternate between two regions, which form the future
basins of attraction of two fixed point states. These states only appear in the system when
the morphogen concentration drops below a certain threshold and the stable limit cycle
supporting persistent oscillations disappears (Supp. Fig. S2.2A). The stable oscillations
thus serve as a memory for the oscillation phase at which a cell left the growth zone
and will determine the cells final segmental state. In case of damped oscillations, cells
oscillate at a decreasing amplitude and are on a trajectory towards the stable equilibrium
residing inside an unstable limit cycle (Supp. Fig. S2.2B). If this is combined with a
shallow morphogen gradient and hence a long transient, oscillation amplitude may have
decreased so far that cells have already become stuck in the basin of attraction of only one
of the two stable states, thus preventing segmentation. Put differently, due to the reduced
amplitude the cells lose the information of the oscillation phase with which they left the
growth zone – and thus what type of segment they should become. With a steep gradi-
ent, the bistable regime is reached fast enough and therefore the nature of the oscillation
(damped or persistent) is less relevant.
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Figure 2.5. A shallow gradient more often yields a sloped frequency profile Histogram of
the frequency difference between oscillations in the growth zone and at the end of the profile
(see illustration). Note that the damped oscillators are grouped in the bin with 0.0 frequency
difference. Bin size: 0.01

It is less clear why individuals with a shallow gradient more often evolve a sloped
frequency profile and waves of gene expression. If we assume that there is no inherent
difference in functionality between having a constant or a sloped frequency profile, the
increase in the number of sloped profiles could simply be due to the more general need
for sustained oscillations when the gradient is shallow. In that case, a sloped profile
represents just one of two ways of achieving persistent oscillations. On the other hand, if
a sloped frequency profile were to have any additional functionality such as its suggested
larger robustness, it would have more space and time to exert this functionality under
a shallow, more spread out, morphogen gradient. This could possibly contribute to its
more frequent evolution under shallow gradients.

2.3.4 A shallow gradient more often yields complex solutions

Above we established that the steepness of the morphogen gradient influences the type
of oscillatory frequency profile. Next, we investigated whether differences in morphogen
gradient slope also cause differences in the complexity of the evolved oscillatory net-
works. We find that individuals with shallow morphogen gradients may evolve to slightly
larger core networks, but this difference is not significant due to the large amount of vari-
ation between simulations with the same type of morphogen gradient slope (Fig. 2.6A).
Still, the networks evolved under a shallow morphogen gradient do tend to contain more
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feedback loops, especially more of the negative FBLs that are needed to construct an
oscillator (Fig. 2.6B). In addition, loops are also larger on average (Fig. 2.6C). However,
this increase in average loop number and size is mainly caused by a subset of 14 simula-
tions (out of a total of 59) which have more than 20 negative feedback loops, rather than
all simulations evolving to larger networks. These simulations also have the largest gen-
omes (Supp. Fig. S2.3). The increased complexity in this subset may reflect the stronger
requirement for stable oscillations under a shallow gradient.

Figure 2.6. Comparison of genome and network properties A) Violin plots (vertical his-
togram) of the number of genes and transcription factor binding sites (TFBS) in the pruned
genomes of shallow-gradient (dark) and steep-gradient (light) simulations. B) Violin plots of
the number of positive and negative feedback loops in the pruned networks of the shallow-
and steep-gradient simulations. C) Histogram of the number of loops (FFL and FBL) of a
certain size. All histograms of individual simulations have been summed for this average
histogram. D) Boxplot of the morphogen level at which individuals reach a stable expression
(after the transition from the oscillatory to the non-oscillatory regime).
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Finally, individuals evolved with a shallow gradient clearly freeze their temporal os-
cillations into spatial stripes at a higher concentration of the morphogen (Fig. 2.6D).
This may reflect a partial compensation of the long transient by reducing the time until
segment formation. On the other hand, it may simply be a result of the lack of a sharp
transition from high to low morphogen concentration in a shallow gradient. In that case,
it is somewhat arbitrary at which posterior morphogen concentration the transition to
stable segments takes place, while for a steep gradient, a morphogen concentration close
to zero is the logical point for this transition.

2.3.5 Network complexity and frequency profile slope are

uncorrelated

As discussed above, regulatory networks are on average more complex and oscillator
profiles are on average more sloped under a shallow morphogen gradient. However, this
increase in average complexity and slopedness resulted from substantial increases in net-
work complexity or profile slopedness in a subset of the simulations rather than a modest
increase in most simulations. This raises the question to what extent the evolution of
complex networks and sloped frequency profiles is correlated. Note that vertebrate seg-
mentation is characterised by both a complex three-part oscillatory network and a sloped
oscillatory frequency profile, which may be taken to suggest that these two properties
evolve in concert.

Supplementary figure S2.4 shows a scatter plot of network complexity (as measured
by the number of negative feedback loops in the pruned network) versus frequency dif-
ference across the profile. Interestingly it illustrates the absence of a clear correlation
between network complexity and slopedness. This suggests that different evolutionary
trajectories may be involved in generating complex networks and sloped frequency pro-
files and demonstrates that complex networks are not necessary for sloped frequency
profiles to occur. This fits with our hypothesis that the shallow gradient simulations
require a complex segmentation networks to generate stable rather than damped oscilla-
tions, independent of whether or not the frequency of these stable oscillations depends
strongly on the morphogen concentration. These results suggest that network complexity
and frequency gradient may have evolved independently in vertebrate segmentation.
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2.3.6 Gradient steepness influences evolutionary innovation speed

We thus established that both the type of oscillations, and the underlying network gen-
erating the oscillations may differ between individuals with a shallow or steep morphogen
gradient. Subsequently we investigated whether this difference in final evolutionary out-
come is reflected by differences in the evolutionary trajectories leading up to these out-
comes. In figure 2.7 we illustrate that the evolutionary trajectories of individuals evolved
under the two different gradient slopes differ significantly. Simulations with a steep
gradient yield individuals with more than 10 segments very early in evolution (Fig. 2.7A).
In contrast, while many of the simulations with a shallow gradient are also able to find
a segmented solution quickly, others need a much longer evolutionary timespan to yield
individuals with 10 or more segments. Much of this time, these simulations are stuck in
a primitive, two-segment stage, where the entire tissue that is generated by the growth
zone expresses the segmentation gene while the head does not (Fig. 2.7B). This indicates
that it is harder for evolution to find a segmentation pattern for a shallow gradient.

To further investigate this difference, we removed the “head” from the initial tissue
(see fig. 2.1C). As discussed in the methods section, the head region is the part of the
tissue in which the morphogen gradient is absent and no gene expression whatsoever
occurs. As a segment boundary is defined as the transition from low to high expression
of the segmentation gene or vice versa, simply expressing the segmentation gene in the
non-head part of the tissue suffices to generate the first segment. Thus, removing the head
region will make it harder for evolution to discover the first segment, and may therefore
in some cases make it impossible to find a solution. The rate of success of evolutionary
simulations indeed decreases significantly in absence of a head region, and considerably
more so for shallow than steep morphogen gradients. Only 28 out of 60 simulations find a
solution for a shallow gradient, while 51 out of 60 simulations evolve a segmented pattern
with at least 10 segments for a steep gradient. This further supports our observation that
a segmented body pattern evolves more easily for steep morphogen gradients.
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Figure 2.7. A shallow gradient takes longer to find a solution A) Histogram of the number
of generations it took for simulations to make 10 or more stripes. Bin size=100 B) The
waiting time until individuals with two or more stripes appear in the simulation. Bin size=25
C) The number of generations each simulation spent with only two stripes (see space-time
plot). Note that the first bin includes those individuals which immediately find more than two
stripes. Bin size=50.
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2.3.7 Evolved segmented bodyplans adapt easily to a different

morphogen gradient

Figure 2.8. Switching to another decay reveals functionality of differences between

gradients A) Heatmap of the number of segments (ratio original number of the transplanted
individual / current nr of segments maximum fit individual) after switching the decay rate
of all individuals. B) Violin plot of the difference in the number of genes and TFBS in the
pruned genome between the start and end of the simulation. C) Scatterplot with the frequency
difference (see fig. 2.5C) of the Fourier profile at the start and the end of the decay-switch
run. Blue is from steep to shallow, red from shallow to steep.
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The differences in the number of regulatory loops, the evolutionary history and oscil-
latory frequency profiles suggest that the steepness of the morphogen gradient influences
the functional requirements for the evolved networks. To further assess the functional-
ity of these differences while at the same time investigating whether these differences
are evolutionary mutually exclusive, we extract individuals evolved in a steep or shallow
gradient, and let them continue evolution while now applying a gradient of the opposite
steepness.

When the evolutionary transition goes from a shallow to a steep morphogen gradi-
ent, 22 out of 59 simulations are immediately able to generate more than three segments
(Fig. 2.8A). In contrast, for the evolutionary transition from a steep to a shallow gradi-
ent, only 6 out of 60 simulations can still generate more than 3 segments directly after
the transition (Fig. 2.8A). Still, in both cases evolution generally needs fewer than 100
evolutionary time steps (approximately 30 generations) to come to a new solution with
a similar number of segments as before the transition. However, for the steep to shallow
transition, 3 simulations needed more than 1000 time steps to restore their prior segmen-
tation pattern.

We conclude that the segmentation strategies evolved under either shallow or steep
morphogen concentrations are not mutually exclusive but can in fact easily be converted
into one another. However, these results also imply that the evolutionary transition from
shallow to steep is easier than that from steep to shallow, thus confirming our earlier find-
ings on the difference in speed with which segmentation patterns evolve under shallow
and steep gradients and that shallow gradients require more complex oscillatory net-
works.

Next, we looked at the difference in (pruned) genome size between the original in-
dividuals and an individuals at the end of the evolutionary transition simulation. We
observe that for a transition from a shallow to a steep gradient, genome size is more
likely to decrease, while for a transition from a steep to a shallow gradient genome size
is more likely to increase (Fig. 2.8B). Although the observed differences are admittedly
small, they are in line with the differences in genome size we saw in figure 2.6. This
suggests that this difference is functionally significant.

Finally, in figure 2.8C we illustrate that the frequency profile also changes in accord-
ance with our earlier results. For the evolutionary transition from a shallow to a steep
gradient, the slope of the frequency profile is more likely to decrease (27 decrease, 20
increase) and the number of damped oscillators increases (from 4 to 18). For the opposite
evolutionary transition the slope of the frequency profile is more likely to increase (32
increase, 19 decrease), and the number of damped oscillators decreases (16 to 7). This
result suggests that also the differences in frequency profile are functionally significant.
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2.3.8 Other influences on evolutionary outcome

cell-cell signalling Although our model is more realistic in comparison to previous
models because it explicitly incorporates growth and the formation of a morphogen gradi-
ent through decay, it still contains many simplifications. To name but a few, our model
ignores the role of cell-cell signalling, gene expression noise and the two or three dimen-
sional aspects of the segmented tissue. To test the robustness of our results, we repeated
part of our experiments in the presence of direct, contact-mediated cell-cell signalling
(see Methods).

Figure 2.9. Simulations with cell-cell signalling A) Histograms of the frequency difference
between oscillations in the growth zone and at the end of the profile. The dotted lines are the
histograms of the simulations without CCS (Fig. 2.5) B) Violin plots (vertical histogram) of
the number of genes and transcription factor binding sites (TFBS) in the pruned genomes of
shallow-gradient (red) and steep-gradient (blue) simulations. C. Violin plots of the number
of positive and negative feedback loops in the pruned networks of the shallow- and steep-
gradient simulations.

Table 2.1. Prevalence of frequency profiles

simulations decay
rate

sloped
profiles

fixed
freq.
profiles

damped
profiles

not clas-
sified

Without CCS 0.025 0.25 0.61 0.05 0.09
0.2 0.13 0.58 0.23 0.06

With CCS 0.025 0.31 0.45 0.20 0.04
0.2 0.08 0.58 0.27 0.07

shorter stabilisation period 0.025 0.25 0.58 0.08 0.09
0.2 0.1 0.44 0.32 0.13

gene expression noise 0.025 0.37 0.37 0.02 0.23
and CCS 0.2 0.13 0.74 0.08 0.05
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Interestingly, damped oscillators now occur at an approximately similar rate for steep
and shallow morphogen gradients (Table 2.1), suggesting that cell-cell signalling can
partly mitigate the effect of damped oscillators converging too early to a single equilib-
rium. However, sloped frequency profiles still evolve more often under a shallow than
under a steep morphogen profile (Fig. 2.9A). This provides further support for the notion
that a sloped profile is functional in a shallow gradient but is not directly related to the
occurrence of sustained oscillations, as the percentage of damped oscillators is now the
same for the two types of morphogen gradients.

The difference in genome size between individuals evolved under steep and shallow
morphogen gradients is even smaller in the presence of cell-cell signalling, and also the
difference in number of negative feedback loops is smaller (Fig. 2.9B-C). This further
supports the hypothesis that a complex regulatory network is not required for a sloped
oscillatory frequency profile, but rather that it is necessary to deal with the need for
sustained oscillations, something that appears a less severe constraint in the presence of
cell-cell signalling.

A shorter stabilisation period Simulations with a shallow gradient reliably yield
mechanisms where the transition from oscillations to segments occurs at a higher
morphogen concentration than in mechanisms evolved with a steep gradient (Fig. 2.6D).
We hypothesised that this transition at higher morphogen concentrations is necessary
to obtain stable segment patterning within the available developmental time window.
To test this we reduced the amount of time the developmental process has after tissue
growth (during which further morphogen decay occurs) to achieve final segment pattern-
ing. Halving the duration of this period reduces the number of successful simulations
with a shallow gradient but not a steep gradient (Fig. 2.10A). Furthermore, the shallow
gradient simulations that do manage to evolve segments, form these at a considerably
higher morphogen concentration than before (Fig. 2.10B).
However, the percentage of simulations that evolve a sloped frequency profile does not
increase, although their average slope does seem to be a bit increased (Fig. 2.10C,
table 2.1). This indicates that a sloped profile is not required to terminate oscillations
at a higher morphogen concentration. It will be interesting to investigate whether the
network complexity is increased in the successful simulations with a shallow gradient.

Gene expression noise A sloped profile has been suggested to increase the resilience
of the segmentation process against gene expression noise (El-Sherif et al., 2014), which
we investigated by adding Gaussian noise on gene expression in our simulations. Adding
this noise slightly reduces the number of successful simulations with a shallow gradient
(51 successful simulations out of 60 Fig. 2.10D), but not of those with a steep gradient.
Strikingly, the fraction of simulations with a sloped profile increases in simulations with
a shallow gradient, which suggests that a sloped profile indeed plays a role in increasing
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robustness against noise (Fig. 2.10E). We also find that adding noise greatly increases the
fraction of simulations with a steep gradient that yield persistent oscillations (table 2.1).
This can be understood from a dynamical systems perspective; noise may cause a damped
oscillator to reach its stable equilibrium faster, thus causing it to stop oscillating and lose
phase information.

We want to pursue these findings further, by investigating whether we can identify
differences between simulations evolved with and without noise. For example, these
additional data may allow us to identify correlations between the type of frequency pro-
file and genome sizes, which was not possible before. Furthermore, we would like to
assess the difference in evolvability between individuals evolved with or without noise.
These experiments may provide more information on the possible functions of a sloped
frequency profile.

Figure 2.10. Preliminary results A-C) Simulations with a shorter stabilization period. A)
Vertical histograms of the number of segments formed in simulations with shallow and steep
gradients. B) Boxplot of the morphogen level at which individuals reach a stable expression
(after the transition from the oscillatory to the non-oscillatory regime). Note how the level of
the freezepoint for the shallow gradient is higher than before (Fig. 2.6D). C) Histograms of
the frequency difference between oscillations in the growth zone and at the end of the profile,
with the dotted lines representing the histograms of the original simulations (see Fig. 2.5). D-
E) Simulations with gene expression noise. D) Vertical histograms of the number of segments
formed in simulations with shallow and steep gradients. E) Histograms of the frequency
difference between oscillations in the growth zone and at the end of the profile. Note the
difference in y-axis compared to C.

46



2.4 Discussion

2.4 Discussion

Body plan segmentation is a major evolutionary innovation exhibited by the verteb-
rate, arthropod and annelid clades (Davis and Patel 1999, Peel and Akam 2003). While
all three clades predominantly show periodic, anterior posterior generation of segments,
fundamental differences in patterning details exist. As an example, studies on Tribol-
ium segmentation suggest that segmental prepatterning occurs at a considerably smaller
distance from the posterior growth zone than is the case in vertebrates. This may have im-
plications both for the shape of the posterior morphogen gradient as well as the potential
to generate travelling waves of gene expression.

In the current paper we extended previous evo-devo models for the evolution of body
axis segmentation by incorporating realistic growth from a posterior growth zone, with
a posteriorly expressed morphogen that forms a sloped gradient through decay. We have
previously shown how this biases for the evolution of oscillatory sequential segmentation
(Vroomans et al., 2016). In addition we developed an automatic analysis pipeline that
allows us to compute parameters describing network complexity and oscillator dynam-
ics. With this, we investigated the effect of different morphogen decay rates (resulting in
differently sloped morphogen gradients), gene expression noise and the developmental
time available for segment patterning. We showed that in this new model, different types
of oscillators can evolve, with damped oscillators or oscillators with a constant period
frequently evolving. In some simulations we also observed the spontaneous evolution
of oscillators with a frequency profile resulting in a slowing down of oscillations to-
wards the anterior. Such a profile yields travelling waves of gene expression (Dequéant
and Pourquié, 2008, Morelli et al., 2009), similar to those seen during somitogenesis in
vertebrates. Furthermore, for these frequency profile cases we find that oscillation fre-
quencies typically decrease by 50-60% percent rather than decreasing all the way to zero,
in agreement with recent experimental measurements (Shih et al., 2015).

We found that a steep morphogen gradient more often leads to the evolution of a
damped oscillator. Under a shallow morphogen gradient, such damped oscillators are
rare because these simulations have to deal with a long spatiotemporal transient before
morphogen levels have decayed enough for segmentation to occur. Under such settings,
sustained oscillations serve as a robust dynamic memory of the oscillator phase with
which the cell left the growth zone. Preliminary results show that in presence of gene
expression noise an increase in the number of evolved persistent oscillators arises also for
steep morphogen gradients, supporting the notion that persistent oscillators contribute to
robust patterning.

In addition to differences in the occurrence of damped oscillators, shallow gradi-
ents also more often yield a sloped profile, leading to travelling waves. Preliminary
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simulations show that this is even more so in the presence of gene expression noise. We
speculate that a sloped profile could aid in the transition to segments when the morpho-
gen concentration changes but slowly, making the transition from the oscillatory to non-
oscillatory regime harder to detect. The slowing down of oscillations keeps the state of
the network longer in the basin of attraction of each of the stable states of the bistable
switch. This causes the network to experience a larger difference in morphogen concen-
tration in any part of the oscillation cycle, thus facilitating the detection of the regime
change to the bistable switch. Finally, we found that the genomes evolved under a shal-
low gradient tend to be larger and the networks have more and larger feedback loops.

We observe interesting parallels between the simulations with a shallow morphogen
gradient and vertebrate somitogenesis. In these simulations as well as in somitogenesis
there is a long spatiotemporal transient before segments are laid down, that is accom-
panied by kinematic waves of gene expression (Lauschke et al., 2013, Palmeirim et al.,
1997, Shih et al., 2015, Soroldoni et al., 2014). In addition, in our simulations with a
shallow gradient segmentation networks tend to be more complex, which resembles ver-
tebrate somitogenesis where the segmentation network consists of an entanglement of at
least three separate oscillators (Goldbeter and Pourquié, 2008).

In contrast, our results for a steep morphogen gradient show parallels to Tribolium seg-
mentation. In the beetle, segment formation occurs considerably closer to the posterior
growth region than in vertebrates, implying a substantially shorter transient. In addition,
the thus far elucidated oscillatory segmentation network is much simpler than the ver-
tebrate segmentation network (Choe et al., 2006). Although travelling waves have been
observed, both the distance travelled and the wave contraction are substantially smal-
ler than in vertebrates, suggesting only a modestly sloped frequency profile (El-Sherif
et al., 2012). These properties resemble our simulations with steep morphogen gradients
which show shorter transients, damped or constant period oscillators and simpler net-
works. Based on this, it would be interesting to compare the caudal gradient that was
recently suggested as the instructive morphogen in Tribolium segmentation (El-Sherif
et al., 2014), to the FGF gradient important for vertebrate segmentation. Based on the
current work we predict a significantly shorter and steeper caudal than FGF gradient.

Intriguingly, in our simulations we did not observe a clear correlation between the
evolution of network complexity and a frequency gradient. This suggests that these two
properties could have evolved separately rather than simultaneously in vertebrates and
may play a different role. Indeed, we demonstrated here that upon incorporating cell-cell
signalling, shallow and steep morphogen gradients evolved damped oscillators equally
often and differences in network complexity were even smaller, while differences in the
number of evolved sloped frequency profiles remained. This demonstrates that cell-cell
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signalling mitigates the need for sustained oscillators, and that rather than complex os-
cillators being necessary for generating a sloped frequency profile they are necessary
for generating sustained oscillations. Finally, our preliminary results with a shorter de-
velopmental time window and gene expression noise also show independent changes in
the number of persistent oscillations and sloped frequency profiles, demonstrating that
sloped frequency profiles do not merely arise as a side effect of persistent oscillators.

Of course, there may have been additional requirements not accounted for in our sim-
plified model, such as the need to scale segment size with the size of the remaining un-
segmented tissue, that may cause the coordinated evolution of network complexity and
sloped frequency profiles. Recent studies have indeed suggested that network complexity
may reflect the need for two distinct oscillators, one with a constant frequency and one
slowing down according to a sloped frequency profile, with the resulting phase differ-
ence patterning somite boundaries and polarity (Beaupeux and François, 2016, Lauschke
et al., 2013). Under these assumptions, network complexity and the presence of a fre-
quency profile together function to pattern somites and hence would likely be correlated.
It would be interesting to modify future evo-devo models to enable evolution of such al-
ternative oscillatory patterning mechanisms, and investigate whether this mechanism as
a whole increases robustness.

In the future, we aim to use the methodology developed here to further investigate
the forces influencing the evolution of oscillatory segmentation. Specifically, we aim
to further test the suggested increased robustness of sloped frequency profiles to ex-
pression and developmental noise and extend our analyses to a more realistic 2D tissue
context. Interestingly, our preliminary results indicate that gene expression noise, but
not noise in the morphogen gradient substantially increase the frequency with which
sloped frequency profiles arise. Furthermore, we would like to investigate when steep
versus shallow morphogen gradients are expected to evolve. Interestingly, our evolution-
ary transition experiments show that segmentation modes can easily convert from a steep
to a shallow morphogen gradient and vice versa. We speculate that early in evolution
there may be selection for steep morphogen gradients for which oscillatory segmentation
readily evolves, while later in evolution there may be selection for shallow morphogen
gradients that generate more robust and evolvable persistent oscillators. Preliminary res-
ults confirm this early selection for a steep gradient. Interestingly, amphioxus, belonging
to the cephalochordate sister group of the vertebrates, indeed patterns its somites close to
the posterior (Beaster-Jones et al., 2008). This is consistent with a short, steep morpho-
gen gradient. Furthermore, amphioxus lacks precision mechanisms involved in ensuring
left-right symmetry (Bertrand et al., 2015). This could point to a role for a long transient
and a sloped frequency profile in maintaining left-right symmetry.
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Table 2.2. parameter values

parameter values remarks
general

grid size 30x30
evolutionary time steps 10000
death rate 0.5
initial # agents 50
Development

developmental time steps 900 or 1200 the number of integration steps
duration of division period 600 divisions occur every 5 time steps
duration of stabilisation period 300 or 600 period without divisions
integration step size 0.2 forward Euler integration
Morphogen decay rate 0.025 or 0.2
initial tissue size 14 cells of which 9 form the head
Gene and protein dynamics

gene product decay rate 0.3
Hill constant of the TFBS 60.
gene transcription 100.
Mutational dynamics

Nr of gene types 16
gene duplication 0.006 Note that with the gene, also its

TFBS are duplicated.
gene deletion 0.009
TFBS weight change 0.001
TFBS type change 0.001
TFBS duplication 0.0015
TFBS deletion 0.004
TFBS innovation 0.001 spontaneous emergence of new

TFBS
Fitness

G: penalty per gene 0.0005
T: penalty per TFBS 0.00005
control period 100 steps Period over which gene expression

stability is measured.
U: expression variance penalty 0.1 Penalty per cell that has a variance

in segmentation gene level > 5.0
during the control period.
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celltype colour algorithm:

celltype =
n
∑

i

si ∗ i
3















si = 0 if Gi < ThOff

si = 1 if ThOff < Gi < ThOn

si = 2 if Gi >= ThOn

(2.3)

If the cell expresses any genes, its celltype is translated into a colour as follows:
colour = celltype∗40%251. The colour number gives a point on the following
colour gradient:
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Figure S2.1. Examples of profiles that are harder to classify
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Figure S2.2. Networks with persistent and damped oscillations have different origins.

A) Persistent oscillations are the result of a stable limit cycle around an unstable equilibrium
(open blue dot). As long as conditions (e.g. morphogen concentration) stay constant, these
oscillations continue indefinitely. When the morphogen concentration decreases, the system
will reach either of the two stable states (red dots), depending on the basin of attraction (red
zones) in which it finds itself. B) Damped oscillations are caused by a stable spiral. Even if
all else stays constant, the oscillations lose amplitude over time, and the system will end up
with fixed gene expression. Such a system “loses” the memory of the oscillations and thus of
the phase with which it started.
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Figure S2.3. Larger genomes generate networks with more loops. Scatterplot of the
number of loops in the network versus genome size. The two are clearly correlated, but note
that particularly simulations with a shallow gradient (red dots) lead to larger genomes and
networks with more loops.

Figure S2.4. The type of frequency profile is not correlated with the number of loops

Scatterplot of the number of loops in the network versus the posterior to anterior frequency
difference in the profile.
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Chapter 3. Asymmetric somitogenesis

Abstract

Somitogenesis is one of the major hallmarks of bilateral symmetry in vertebrates. This
symmetry is lost when retinoic acid (RA) signalling is inhibited, allowing the left-right
determination pathway to influence somitogenesis. Intriguingly, the resulting left-right
asymmetric phenotypes differ between the model species zebrafish, chicken and mouse.
In all three cases, the clock speed becomes asymmetric, with slower gene expression
oscillations on the right side. In zebrafish and mouse, the FGF8 gradient thought to
constitute the wavefront also becomes asymmetric, extending further anteriorly on the
right. While in zebrafish this leads to a transient delay in right sided patterning that
subsequently becomes fully restored, in mouse patterning abnormalities may arise in the
region on the right that experienced the delay.
While somitogenesis is generally considered as functionally equivalent among differ-
ent vertebrates, substantial differences exist in the subset of oscillating genes. Variation
also appears to exist in the way oscillations cease and somite boundaries become pat-
terned. Here we apply computational models of somitogenesis to investigate the differ-
ent asymmetry phenotypes. Specifically, we investigate to what extent differences can
be explained from observed differences in FGF asymmetry and whether differences in
determination may be involved.
We demonstrate that while a simple phenomenological clock and wavefront model can
easily reproduce the chicken asymmetry phenotype, it does not readily reproduce the
zebrafish and mouse phenotypes. Instead, to reproduce these phenotypes we developed
models that explicitly take into account the experimentally observed dynamics of clock
termination and boundary determination. Our results suggest that functional differences
exist in somitogenesis between different vertebrates. Furthermore, they demonstrate that
studying left-right asymmetry can unravel species differences that are not apparent from
symmetric somitogenesis.
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3.1 Introduction

The vertebrate body plan displays bilateral symmetry, for instance in the placement
of limbs and cranial features; somitogenesis is one of the major hallmarks of this sym-
metry. The regular blocks of tissue patterned during somitogenesis later on give rise to
the vertebrae, ribs and skeletal axial muscles. Somite pairs are generated periodically
in an anterior to posterior direction from the presomitic mesoderm (PSM). This periodic
patterning arises from a so-called clock and wavefront developmental patterning mech-
anism (Cooke and Zeeman, 1976, Hubaud and Pourquié, 2014). In the posterior part of
the PSM, cells experience regular gene expression oscillations, called the somitogenesis
clock (Palmeirim et al., 1997, Resende et al., 2014). As cells progress towards the an-
terior PSM, these oscillations become transformed into a stable spatial somite boundary
pattern. This transition from temporal oscillations to spatial stripes is thought to arise
from the transition of high to low morphogen concentrations as cells move anteriorly,
and referred to as the wavefront (Aulehla and Pourquié, 2010). This process results in
the periodic generation of pairs of somites flanking the notochord, with left and right
somites being generated with identical timing and spacing. This symmetry becomes es-
sential during later developmental stages when parts of the left and right somites fuse
to form the vertebrae, and disturbances of somite symmetry can have severely disabling
consequences such as scoliosis (Pourquié, 2011).

The somitogenesis clock, like all biological processes, is inherently noisy (Herrgen
et al., 2010, Jiang et al., 2000). Therefore, additional levels of control are necessary
to coordinate the behaviour of individual cells to ensure sharply delineated, coherent
boundary formation and generate precise left right symmetry. While Delta-Notch medi-
ated direct cell-cell signalling has been shown to synchronise directly neighbouring cells
(Özbudak and Lewis, 2008, Soza-Ried et al., 2014), the precise mechanism underlying
left-right coordination have only been partly elucidated. Studies in zebrafish, chick and
mouse have shown that somite symmetry can be compromised by disrupting the left-
right signalling pathway (Brend and Holley, 2009, Kawakami et al., 2005, Vermot and
Pourquié, 2005, Vermot et al., 2005). In a brief time window during somitogenesis, the
signal of the left-right pathway passes through Hensen’s node and the posterior PSM in
order to confer a left- or right-handed identity to the more distal lateral plate mesoderm
(LPM), from which most internal organs are generated (Brent, 2005). When components
of this pathway (such as H+/K+-ATPase (Kawakami et al., 2005)) are knocked down,
the travelling waves that lay down the somite prepattern become asymmetric (Kawakami
et al., 2005, Vermot and Pourquié, 2005, Vermot et al., 2005). Somite formation then
becomes delayed randomly on one of the sides (without a clear bias to the left or the
right) (Kawakami et al., 2005), and somite alignment may be compromised ((Vermot
and Pourquié, 2005) reviewed in (Brend and Holley, 2009)). Some components of the
pathways involved in left-right determination are also involved in somitogenesis (FGF,
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Delta-Notch and Wnt), and may become asymmetrically distributed during LR signalling
(Boettger et al., 1999, Huang et al., 2011, Jacobs-McDaniels and Albertson, 2011, Kato,
2011, Kawakami et al., 2005, Krebs et al., 2003, Nakaya et al., 2005, Raya et al., 2003,
Tanaka et al., 2005, Ángel Raya et al., 2004).

During normal somitogenesis, a compensatory mechanism must be active to counter-
act the asymmetric distribution of somitogenesis pathway components. This mechanism
may then be responsible for the perturbed somite symmetry when the left-right pathway
is inhibited. Experiments indicate that retinoic acid (RA) normally buffers the effects of
the left-right pathway on somitogenesis, as somite symmetry is perturbed when RA is in-
hibited while left-right signalling remains unaltered (Kawakami et al., 2005). In absence
of RA, there is a clear bias in which side becomes delayed: the left side in chick and the
right in zebrafish and mouse (Brent, 2005, Kawakami et al., 2005, Sirbu and Duester,
2006, Vermot and Pourquié, 2005, Vermot et al., 2005). In the latter two, the gradient of
FGF8 also extends more anteriorly on the right. Since FGF8 is an important component
of the determination front, this may explain the observed delay in zebrafish and mouse.
The field of somitogenesis has a rich history of computational models to supplement ex-
periments, but thus far somite left-right asymmetry has not been addressed. In this study,
we take the first step by creating simple phenomenological models to reproduce the dif-
ferent asymmetry phenotypes observed in zebrafish, chick and mouse. We start with a
phenomenological clock-and-wavefront model, in which a frequency gradient dictates
the slowing of a simple phase oscillator. Somite pre-patterning occurs when a frequency
of zero is reached (Ares et al., 2012, Morelli et al., 2009). With this, we investigated
the necessary assumptions, parameter settings and their robustness needed to mimic the
species-specific asymmetry phenotypes.

While the simple clock and wavefront model suffices to explain the chick asymmetry
phenotype, it has difficulty reproducing zebrafish and mouse asymmetric somitogenesis.
Since the three species differ substantially in the number and type of genes that oscil-
late (Krol et al., 2011) and in the dynamics governing the onset of somite determina-
tion (Akiyama et al., 2014, Niwa et al., 2011), we develop more detailed somitogenesis
models for mouse and zebrafish hoping to explain these differences. In the zebrafish
model we incorporate experimental observations suggesting that a boundary of FGF sig-
nalling together with oscillation waves dictate somite determination (Akiyama et al.,
2014). Likewise in the mouse model we incorporate experimental observations that in-
teractions between a non-slowing pErk oscillator and a slowing Notch oscillator together
dictate oscillation termination (Niwa et al., 2011).

Our analysis indicates that the more detailed models explain the zebrafish and mouse
asymmetry phenotypes in a more straightforward and robust manner. These models also
result in a more block-like specification of future somites well before oscillations cease,

58



3.1 Introduction

which is in closer agreement to experimental findings (Niwa et al., 2011, Shih et al.,
2015). In addition, while the more detailed models do not explicitly account for rostro-
caudal somite polarity, they do suggest that the frequency gradient may provide temporal
information for generating anterior-posterior polarity downstream of somite determin-
ation. Finally, the models make distinct, experimentally testable predictions. For in-
stance, while the simple model predicts that the observed right-handed delay in zebrafish
and mouse is caused by the right PSM skipping a few cycles of somite formation, the
more extended models generate this delay without such cycle skipping. Thus, our ana-
lysis indicates that the mechanism by which oscillations cease and pre-patterning sets in
warrants further study.
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3.2 Results

3.2.1 A clock-and-wavefront model of somitogenesis

experimentally observed asymmetric phenotypes First, we assess the asymmetric
phenotypes in different vertebrate model species when RA synthesis is blocked, either
chemically or genetically. In chick embryos in which RA synthesis is inhibited chemic-
ally, the first 7 somites form normally but subsequent left-sided somites are formed more
anteriorly than those on the right (Fig. 3.1). Oscillations slow down on the right (Vermot
and Pourquié, 2005) (see table 3.1), while the FGF8 gradient remains symmetric but ex-
tends more to the anterior, which is expected given the antagonistic interaction between
FGF8 and RA (Diez del Corral et al., 2003). In RA knock-out mice, after 9 symmet-
ric somites have formed somitogenesis becomes delayed in the right PSM by up to 3
somites. Furthermore, the travelling waves desynchronise between left and right and the
FGF8 gradient is shifted more anteriorly on the right (Fig. 3.1). The delayed right-hand
somites are often asymmetrically positioned, and occasionally the entire region remains
unpatterned (Vermot et al., 2005). After left-right signalling has terminated, subsequent
somites again form symmetrically. In zebrafish with inhibited RA synthesis, the asym-
metry looks similar to that in mouse, with a delay occurring between somites 6 and 13 in
the right PSM. In contrast to mouse, the delayed right side somites form at the same A-P
position as the left, resulting in a fully symmetric spinal column (Kawakami et al., 2005)
(Fig. 3.1, see also the Glossary).

Figure 3.1. Asymmetric somitogenesis phenotypes after RA knock-down. RA-inhibited
chick embryos have symmetric FGF8 distributions and skewed somite formation, where
the somites on the left are placed more anteriorly. Mice and zebrafish without RA instead
have asymmetric FGF8 distributions and delayed somite formation on the right. While it is
not entirely clear whether chick embryos return to symmetric somite formation, mouse and
zebrafish embryos do. In zebrafish, the “catch-up” somites (the somites that are formed more
quickly to make up for the initial delay) are formed at symmetric positions compared to the
left, while in mouse this is not always the case, and the catch-up region may even remain
unpatterned.
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the baseline model We first investigate whether we can capture these three different
phenotypes with a simple model of somitogenesis (Jaeger and Goodwin, 2001, Morelli
et al., 2009). The model consists of cells forming a 2D tissue (the PSM), divided into
a left and a right half (Fig. 3.2A). At the posterior end (the “tailbud”), new cells are ad-
ded at regular intervals, reflecting ingression and division in the tailbud. In each cell,
the somitogenesis clock is modelled as a phase oscillator. The frequency of oscillations
is largest at the posterior end of the tissue and declines towards the anterior, reflecting
the combined effect of the FGF and Wnt pathways on the clock. In this first baseline
model, we incorporate this slowing down directly as a frequency profile: a function of
the distance of each cell from the posterior end. The point where the oscillation frequency
becomes zero represents the determination front. Here the temporal oscillations are trans-
formed into a spatial pattern with cells memorising their latest oscillation phase (Morelli
et al., 2009)(Fig.3.2B, see also Methods). This frequency profile retracts at the pace with
which cells are added to the posterior end, resulting in a constant size of the PSM. As has
been shown before, the shape and length of the frequency profile determine the number
of waves traversing the PSM: with a shorter and more nonlinear frequency profile, there
are fewer travelling waves (Fig.3.2D-E) (Morelli et al., 2009). The maximum frequency
of the profile, which occurs in the tailbud, determines the pace of somitogenesis. We
do not take noise into account and do not include cell-cell signalling; the effect of cell-
cell synchronisation on the oscillation frequency has been extensively investigated before
(Morelli et al., 2009).

We start the simulations with symmetric left and right clock frequencies and wave-
front positions, then at some point impose the asymmetry in frequency between left and
right (Fig.3.2C). A reduction in right oscillator frequency is modelled by lowering the
maximum oscillation frequency, while an anterior shift in FGF/Wnt gradient is imple-
mented by allowing the anterior zero-point of the frequency profile to stay in place for a
fixed duration, so that the profile transiently extends with the growing tissue rather than
shifting posteriorly.
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Figure 3.2. A simple model of somitogenesis. A) We model a 2D tissue of cells with a
phase oscillator (Morelli et al., 2009). The tissue is divided into a left and a right half. Cells
are added to the PSM at the posterior end, and inherit the phase of the posterior-most cells.
Above, we show the frequency profile (a negative quadratic function, see Methods). The
point at which the frequency becomes zero retracts at the same speed as the extension of the
PSM in the posterior. In the region where somites are defined (indicated in red), cells no
longer oscillate. B) An example of how the left and the right may differ in frequency profile.
C) Different frequency profiles of the simulations shown in D, differing in steepness (exp)
and extent (σ). D) The number of waves traversing the PSM for the different shapes of the
frequency profiles. The grey line in the figures is superimposed for clarity, and when waves
are transformed to somites, we define the colours with a sharp cut-off for greater visibility.
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Table 3.1. phenotypes of model organisms during somitogenesis

genetic properties left-right asymmetry in absence of RA
organism pErk

dynamics
oscillating
pathways

left-right
phenotype

Slower
osc

FGF8 delay (somite nr) somite
size diff

return to
symmetry

chick smoothly
retracting

FGF,
Wnt,
Notch

right side symmetric,
more an-
terior

no; left somites
smaller

yes unclear

zebrafish retracts in
jumps

Notch right side right side
more
anterior

right side 2-3
somites delayed

no yes

mouse oscillates FGF,
Wnt,
Notch

right side right side
more
anterior

right side 2-3
somites delayed

sometimes yes

63



Chapter 3. Asymmetric somitogenesis

asymmetric oscillations and the tailbud The most general property of left-right asym-
metry in all studied vertebrate species is the difference in oscillation frequency between
cells in the left and right PSM. We first studied the effect of such a difference without
modelling any change in the FGF gradient. Theoretically, two possibilities exist: either
the left-right signalling pathway confers a frequency difference in the entire PSM, includ-
ing the tailbud (Fig. 3.4B), or the difference in frequency only occurs anterior to the node,
where left and right paraxial mesoderm are separated by the notochord (Fig. 3.3D). If the
former is assumed to be the case, we observe that oscillation phase diverges between left
and right in the tailbud, and the slower pace of oscillations on the right necessarily results
in larger and fewer somites compared to the left (Fig. 3.3A-B).

However, in experimental images we do not observe clear phase differences in the
tailbud, suggesting that cells in the tailbud oscillate synchronously (Kawakami et al.,
2005, Saúde et al., 2005, Vermot and Pourquié, 2005, Vermot et al., 2005). The node,
which is considered the left-right signalling centre (Komatsu and Mishina, 2013), lies
anterior to the tailbud and exerts its effect laterally. This would imply that the tailbud
is not much affected by the left-right system. We therefore assume in all subsequent
simulations that cells have the same oscillation frequency and phase in the tailbud before
entering the PSM on the left or the right, after which the frequency decreases on the
right (Fig. 3.3D). This yields “phase forcing” of the oscillators in the right PSM, with the
faster oscillations in the tailbud taking over control and driving the oscillation pace of the
slower PSM. As a consequence, right-hand somites return to a size dictated by the tailbud
frequency shortly after the left-right asymmetry is imposed (Fig. 3.3C). Because of the
transition period in which the somites on the right were larger, somites on the right have
become shifted posteriorly, resulting in fewer somites formed on the right (Fig. 3.3C).

Figure 3.3. Tailbud dynamics influence the course of asymmetric somitogenesis. A -B)
Asymmetric frequency profile throughout the entire tissue (also tailbud). The normal period
is 90 minutes. At one third of the simulation, the period on the right side increases by 15
minutes. C-D) The tailbud is symmetric, the PSM is not. Top: period on the right is 15
minutes longer. Bottom: right period is 30 minutes longer. Regions with clear asymmetry
are indicated with dashed boxes.
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simulating chick asymmetric somitogenesis In chick, inhibition of RA synthesis did
not induce obvious asymmetries in the FGF gradient (Vermot and Pourquié, 2005). In-
stead, it was symmetrically shifted anteriorly compared to wild-type embryos, as is ex-
pected from the known antagonism between RA and FGF (Diez del Corral et al., 2003).
Given the role of FGF in keeping cells in an undifferentiated oscillatory state (Dubrulle
et al., 2001), the anterior shift implies an extension of the PSM region supporting oscil-
lations. Thus, to specifically model chick somitogenesis we applied a symmetric anterior
shift of the frequency profile. The anterior shift of the frequency profile imposes a tran-
sient delay in somite formation, causing the travelling waves to compact further and
yielding a number of smaller somites on both the left and the right (Sirbu and Duester,
2006, Vermot and Pourquié, 2005, Vermot et al., 2005). The decrease in somite size
is smaller on the right due to the simultaneously imposed lower oscillation frequency
on the right. The resulting left right differences in somite size cause an offset in left
and right somite positioning similar to those observed for the simulations without the
determination front shift (Fig. 3.3C). Since somites on the left are smaller shortly after
inhibiting RA synthesis, it appears as if somitogenesis is delayed on the left (Brent, 2005)
even though the clock actually goes faster on the left. Later on, as tailbud forcing sets
in and left and right somites have regained similar sizes it depends on the amount of
oscillator slowing and frequency profile asymmetry whether or not symmetry becomes
restored (compare top and bottom panels in Fig. 3.4A). When after a while we restore
oscillation frequencies and extent of frequency profiles to their values before LR sig-
nalling (symmetric conditions), a second opposite transient occurs correcting the earlier
arisen asymmetries between left and right. In the end, the left and right count the same
number of somites (Fig. 3.4C, Video 1). A symmetric anterior shift of the determination
front, paired with a lower oscillation frequency on the right, thus accurately captures the
asymmetric phenotype of chick somitogenesis in absence of RA.

Figure 3.4. Symmetric determination front shifts during chick somitogenesis.

A-B) Asymmetry combined with an anterior shift of the frequency profile (increase in σ,
measured relative to normal somite size) on both sides. Left sided period is 90 minutes.
C) Simulation in which the frequency and determination front position are shifted back to
normal values. Left period: 90 minutes, right period: 105 minutes, shift: 2 somites.
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simulating zebrafish and mouse asymmetric somitogenesis In order to simulate
zebrafish or mouse somitogenesis, we need to take into account that the FGF8 gradient
shifts ahead further on the right, causing a larger anterior shift of the oscillating region
and increased delay in somitogenesis. To investigate the effect of an asymmetric shift in
frequency profile in isolation and in the simplest possible manner, we initially only shift
the frequency profile on the right while maintaining the left frequency profile and left and
right oscillator frequencies constant (using mouse oscillator frequencies (period of 120
min) and somite size as an example; Fig 3.5A, left). We observe a delay in the formation
of somites on the right, with somites already pre-patterned on the left that have not yet
been determined on the right (Fig 3.5A, right, top panel). Once the frequency profile
shift is complete, one or more smaller somites are formed on the right (Fig. 3.5A left,
bottom panel), shifting the position of all following somites to become asymmetrically
positioned.

Since in zebrafish (and occasionally in mouse) the “catch-up” somites are formed sym-
metrically, we investigate whether the asymmetric positioning of somites in our simula-
tions can be corrected by taking into consideration the simultaneously occurring lower
oscillation frequency on the right (Fig. 3.5B, left). While the lower frequency indeed
causes a temporary increase in somite size on the right, it cannot compensate for the
small size of the first somite that formed directly after the anterior shift of the determina-
tion front (Fig 3.5B right). When we tune the left-right frequency difference and anterior
shift relative to each other, we do eventually end up with bilaterally symmetric somites
again but only after this transient with asymmetric somites (Fig. 3.5B, left, lower panel).
This may suffice to explain mouse somitogenesis, but in zebrafish the “catch-up somites”
are formed at a symmetric position with the left side, which is now clearly not the case.

So far the decrease in oscillation frequency and anterior shift of the frequency profile
were applied at the same time. When we instead assume that the oscillations on the right
slow down before the profile starts to shift, we observe that the shift may compensate
almost exactly for the increase in somite size that would otherwise ensue (Fig. 3.5C, right,
top panel), although the first few somites on the right do remain a little larger. When
the anterior shift is larger, also a larger decrease in oscillation frequency is required,
otherwise the compensation does not suffice ((Fig. 3.5C, right, bottom panel).

Next, to completely mimic the experimental phenotype upon the blocking of RA, we
add the lesser anterior shift of the left determination front and a return to symmetric para-
meters (frequency and determination front position) after a number of tailbud oscillations
(Sirbu and Duester, 2006). We find that under these conditions it becomes considerably
harder to tune the size and timing of frequency difference, frequency profile shifts and
return to symmetrical conditions (Fig. 3.5D, Video 2 and Supp. Fig. S3.1) to obtain
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symmetrically formed somites. We repeated the simulations for zebrafish oscillator fre-
quencies (period 30 min), and found that the tuning is equally difficult (Supp. Fig. S3.2).

Figure 3.5. The effect of an anterior determination front shift in the right PSM during

mouse and zebrafish somitogenesis. A) Simulations in which only the extent of the fre-
quency profile (σ) is increased on the right, at one third of the simulation. B) Simulations
combining a drop in oscillation frequency on the right with the anterior frequency profile
shift. C) Simulations in which the frequency drop comes one cycle before the anterior shift.
D) Simulations in which the frequency profile also extends by one somite length on the left.
Furthermore, after a number of cycles the conditions are restored to symmetrical values.
Starting values: oscillation period = 120 minutes, σ = 60 cells. Values for the right PSM
upon L-R signalling indicated in the figure.

conclusion Thus, our modelling predicts that if the implicit assumptions of this simple
model are met, in the right paraxial mesoderm of zebrafish oscillation speed decreases
prior to the anterior shift of the determination front in order to ensure symmetric somite
formation. However, our modelling also predicts that mouse and zebrafish asymmetry
phenotypes are highly non-robust to the precise magnitude and timing of changes in
wavefront and oscillation frequency, indicating that the assumptions of this model may
in fact not be met during mouse and zebrafish somitogenesis.
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3.2.2 Extended models of somitogenesis

introduction Although the clock-and-wavefront model is widely accepted, the exact
mechanism by which the oscillations are translated to a somite pre-pattern is still debated
(reviewed in (Hubaud and Pourquié, 2014)). While there is evidence for a conserved role
of boundary determination genes such as pErk, Mesp, Ripply and Tbx6 in zebrafish,
chick and mouse (for review, see (Yabe and Takada, 2016)), there are also large differ-
ences in the number and type of oscillating genes between these species (Krol et al.,
2011) (Table 3.1). Based on these differences, we hypothesise that the transition from
oscillations to a determined somite and the feedback of this process on the progression
of the determination front could be regulated differently in these model organisms. Since
this could potentially explain the different left-right phenotypes in zebrafish and mouse,
we aimed to create more accurate models of somitogenesis for these organisms based on
experimental data.

In the models we develop next, we keep the basic phase oscillator from the clock-
and-wavefront model, that generates travelling waves due to its slowing across the PSM.
Hereafter we will refer to it as the travelling wave oscillator, using it as token for the
slowing oscillatory dynamics of Notch and Her/Hes proteins. We add an explicit pos-
terior morphogen gradient, representing FGF and/or Wnt signalling. This morphogen is
highly expressed in the tailbud and slowly decays in the rest of the PSM, in agreement
with experimental data (Fig. 3.6A). We assume that its level dictates the frequency profile
of the travelling wave oscillator in a nonlinear manner, such that the resulting frequency
profile yields realistic-looking travelling waves (Fig. 3.6A and Methods). Next, we de-
couple the frequency profile from final somite determination. That is, rather than assum-
ing that somite determination occurs when oscillations stop (frequency becomes zero),
we instead implement species-specific rules for somite determination. As we will dis-
cuss below, this often leads to somite determination well before oscillations fully cease.
As a consequence, somite polarity can no longer arise from strict memorisation of oscil-
lator phase upon somite determination, which most current clock-and-wavefront models
tacitly assume.

In the sections below, we describe what is known about the determination mechanism
in zebrafish and mouse, and distil a simple set of rules for somite determination for the
models. We then investigate the consequences of these rules for reproducing the left-right
asymmetry phenotype.
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Zebrafish somitogenesis

experimental data Of the three vertebrate model organisms discussed in this study,
zebrafish may be expected to have the simplest mechanism for somitogenesis. It has
the fewest oscillating genes, which mostly belong to the Notch pathway; none of the
FGF and Wnt pathway genes appear to oscillate (Krol et al., 2011). Yet, already in
zebrafish there are substantial feedbacks between at least the FGF and Notch pathways
that contribute to somite pre-pattern formation (Akiyama et al., 2014), creating a more
complex mechanism than represented by the simple model.

In zebrafish, it was shown that the boundary of pErk expression (an effector gene
downstream of FGF) determines the somite boundary of future somite S-IV, well be-
fore the first signs of somite polarity determination such as Mespa/b expression arise
(Akiyama et al., 2014) (Fig. 3.6A). While the FGF8 gradient itself retracts smoothly with
the extending body axis, pErk becomes displaced by one somite length after each clock
cycle, and this behaviour depends on Notch oscillations (Akiyama et al., 2014). Tbx6 is
another protein important for boundary positioning, whose expression boundary lies one
to two somites anterior to the pErk boundary (Wanglar et al., 2014). Tbx6 becomes dis-
placed from posterior to anterior in somite S-III through inhibition by Ripply1/2 (Wang-
lar et al., 2014), which may represent an indirect dependence on Notch signalling. Thus,
changes in pErk and Tbx6 mark the early stages of somite boundary patterning and de-
termination. We surmise that once FGF8 levels have fallen below a certain threshold
level, the anterior PSM can start differentiating towards somites, with subsequent waves
of Notch signalling initiating the sequence of differentiation events by repressing first
pErk, then TBX6.

While somite boundary determination occurs posteriorly in the zebrafish PSM (at
somite S-IV), Notch pathway oscillations continue up to position S0, where somite
morphogenesis takes place (Shih et al., 2015). The function of these continued oscil-
lations this far anterior to somite boundary formation is unclear. A potential function
could be that later waves of Notch expression switch off (or on) other genes (analogous
to the switching off of pErk and TBX6 expression), thereby inducing further steps in
somite determination and boundary refinement (Shih et al., 2015). The period of Notch
oscillations increases toward the anterior, but only by about 50%. Thus, oscillations do
not slow down infinitely before somite formation, as often assumed in models ((Morelli
et al., 2009, Murray et al., 2011, Tiedemann et al., 2012) and the models above). It is
still debated what controls this oscillator period: while some research reported a link
between FGF8 and frequency via regulation of Her13.2 (Kawamura et al., 2005), other
studies reported no relation between the concentration of FGF8 and frequency (Webb
et al., 2016), maintaining that FGF8 represents only a permissive signal for oscillations
but does not impact period.
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Figure 3.6. A new model for zebrafish somitogenesis. A) Cells in the model have an
explicit FGF8 level, which is 1 in the tailbud and decays with a fixed rate in cells in the PSM,
mimicking the mRNA gradient. From this level, we derive the frequency of oscillations with
the given equation. B) Cells start in a so-called “pErk high, Tbx6 high” state in the posterior
PSM. After their FGF8 level drops below a certain defined threshold (grey dotted line), they
become competent to change to a “pErk low, Tbx6 high” state, which happens when they ex-
perience a peak in the oscillator phase. When another peak passes, they transition to a “Tbx6
low” state, which we for now consider to be the definitive segment state, upon which oscilla-
tions cease. For simplicity, boundary cells are defined as the last ones in a neighbourhood to
transition to a new state, therefore switching on Mespa/b. Cartoon inspired by (Saga, 2012,
Wanglar et al., 2014, Yabe and Takada, 2016) C) Examples of simulations with different σ
(which determines at which concentration of FGF8 the frequency declines), or the FGF8 level
at which cells can change to a ‘pErk low” state.
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model In our extended zebrafish model, somite formation depends on both the morpho-
gen (FGF8) gradient and on the cell state when a peak of the travelling wave (Notch/Her)
oscillator passes (Fig. 3.6A,B). Specifically, cells start in the tailbud in a “pErk high,
Tbx6 high” state. They remain in this state until they fall below a certain FGF8 threshold
level and experience the passing by of a wave of the travelling wave oscillator. Cells
then switch to a “pErk low, Tbx6 high” state. Similarly, the next wave of the travelling
wave oscillator causes a switch to the “pErk low, Tbx6 low” state. Next, oscillations halt,
leading to a fully determined somite (Fig. 3.6B). Cells at the somite boundaries obtain a
state distinct from their neighbours; this is a simplification based on the observation that
Tbx6 seems to switch on Mespa/b at the anterior boundary of its expression domain be-
fore disappearing (Wanglar et al., 2014). Also note that in our model, oscillations cease
earlier (around somite S-III) than has been observed experimentally (Shih et al., 2015).
We consider this to be a reasonable approximation given that we are primarily interested
in boundary formation and not somite determination. For more details we refer to the
methods section.

symmetric model results In figure 3.6C we show simulations with different paramet-
ers. The top pictures show the phase of the oscillator in the PSM, the bottom pictures
show the cell states described above. We find that the number of travelling waves in
the PSM can be increased by lowering the FGF8 threshold for pErk state switching or
by decreasing σ (which determines for which FGF8 level half the maximum frequency
occurs). Both result in a larger PSM and cells at the anterior end of the PSM having a
lower oscillation frequency (figure 3.6C, bottom). Decreasing the decay rate of FGF8
simply extends the PSM and increases the wavelength of the waves, but not their num-
ber (not shown). For all parameter settings, oscillations cease in a posterior to anterior
manner within a forming somite, which is in agreement with experimental observations
(Shih et al., 2015). Also note how segments form before the frequency of oscillations
is zero or even close to zero; this is a consequence of the explicit state transitions shut-
ting down oscillations before the FGF8 concentration (and hence frequency profile) is so
low that oscillations cease by themselves. While the continuation of oscillations beyond
the point of first boundary determination precludes the memorisation of oscillator phase
to allow for somite polarity establishment, the observed posterior-to-anterior progres-
sion of the oscillation waves may provide time-dependent polarity information. Indeed,
experimental data indicate that polarity establishment occurs downstream of boundary
formation (Hubaud and Pourquié, 2014).

asymmetric model results: isolated frequency or FGF decay changes To simulate
the increase of FGF8 in the anterior right PSM, we reduce the decay rate of the morpho-
gen on the right after the formation of four somites, which leads to more FGF8 in the
anterior PSM with some delay. We maintain symmetric oscillation frequencies and im-
pose a return to symmetric decay values five cycles later. This yields a few smaller

71



Chapter 3. Asymmetric somitogenesis

somites about three cycles after the introduction of the asymmetry, which creates the
illusion of a delay on the right because the PSM extends further anteriorly, while the
number of somites is the same (Fig. 3.7A). Upon return to symmetric values, a few over-
sized somites are formed that cause a return to symmetric somitogenesis. When instead
the morphogen decay remains symmetric and only the frequency of oscillations is de-
creased on the right, somite formation there is truly delayed compared to the left. After
four delayed but equally sized somites have been formed, somites on the right become
larger than those on the left, so that somite formation becomes asymmetric (Fig. 3.7B).
When the frequency on the right is returned to normal, a few smaller somites are cre-
ated after which symmetry is restored. We thus observe that frequency decrease and
FGF8 have opposing effects on somite size. Also note that the delay between gradient
or frequency modification and effect on somitogenesis naturally follows from the prede-
termined somite states in the model, which means that a cluster of cells posterior to the
last-formed somite already has determined somite boundaries and are unaffected by the
change.

asymmetric model results: combined frequency and FGF decay change When both
frequency and decay rate are reduced on the right (and returned to normal after five
cycles), there are combinations of decay rate and frequency change that yield delayed
somite formation (lagging behind 2-3 somites) which subsequently becomes restored
into symmetric somitogenesis, in agreement with experimental data (Kawakami et al.,
2005) (Fig. 3.7C, Video 3). With a larger difference in frequency, the change in decay
rate should also be larger to ensure maintenance of symmetric somite sizes. Still, somito-
genesis remains roughly symmetric even for decay rates diverging to about 10% from the
“perfect” compensatory decay rate (Supp. Fig. S3.3).

conclusion Similar to the baseline clock-and-wavefront model, our extended zebrafish
model predicts the need to coordinate changes in oscillation frequency and wavefront
position to obtain delayed but symmetric somitogenesis. However, in the baseline model
there was an additional need to tune the timing of frequency and wavefront changes. In
the extended model the FGF8 decay dynamics automatically cause a delay in the onset of
determination front displacement. Finally, it appears that less precise tuning is required in
the extended model, suggesting a more robust mechanism. Furthermore, this model has
a more natural explanation for the delay in somite formation on the right: a combination
of delayed FGF8 gradient retraction and a slower clock, which induces an increase in
the time needed to change the state of already-competent cells. This in contrast to the
baseline clock-and-wavefront model, in which the determination front had to be kept in
place artificially for a certain number of cycles to create a delay in somite formation.
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Figure 3.7. Frequency change and FGF8 increase can compensate each other. Pic-
tures display oscillation state during asymmetry (I), cell states during asymmetry (II) and
all boundaries formed during the asymmetry period (III). The frequency changes and decay
rate changes are for the right side only, starting at the 4 somite stage and ending at the 9
somite stage. Note the considerable delay between the change in parameters and a change in
somite formation, due to the pre-emptively formed somite boundaries. In the right column,
the change in frequency and decay are chosen such that symmetric somitogenesis is obtained,
with never more than a one-cell shift in boundary position.

Mouse somitogenesis

experimental data During mouse embryogenesis, many components of the Wnt, FGF
and Notch signalling pathway oscillate (Krol et al., 2011). For instance, the FGF8 sig-
nalling pathway effector pErk oscillates in the mouse PSM, and these oscillations are
thought to determine the pace of somitogenesis (Harima and Kageyama, 2013, Niwa
et al., 2011). Rather than forming a travelling wave across the tissue like the oscillat-
ing genes of the Notch pathway, pErk oscillates roughly synchronously across the entire
PSM, with a frequency similar to that of Notch in the tailbud (Niwa et al., 2011). As a
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consequence, in the anterior where Notch oscillations slow down, a frequency difference
and hence a phase difference arises between the two oscillators. It was shown that somite
boundary formation occurs in the anterior PSM when Tbx6 expression coincides with a
wave of Notch expression and low expression of the pErk oscillator. Mesp2 expression
represents the earliest sign of this boundary, and subsequently switches off Tbx6 and
regulates somite rostro-caudal polarity (Oginuma et al., 2008, Yabe and Takada, 2016).

model Experiments have shown that pErk oscillates due to inhibition by Dusp4 and
Sprouty4, which are in turn regulated by Hes7, a component of the Notch pathway (Hay-
ashi et al., 2009, Niwa et al., 2011). So also in mouse, there is a feedback from the
Notch pathway on pErk. An intriguing question is how the pErk oscillations can main-
tain a constant frequency across the PSM despite the influence of the travelling wave.
Here we simplify matters by ignoring this unresolved interdependence between the two
oscillators, and instead incorporate pErk dynamics by adding a “global” oscillator to the
model, with the same phase and frequency everywhere in the tissue, independent from
the travelling wave (Notch) oscillator. Notch oscillates with the same frequency as the
pErk oscillator in the tailbud, but its phase diverges from pErk in the anterior PSM as
the Notch oscillator slows down due to declining morphogen levels (Fig. 3.8A). Somites
form in the anterior when the expression of the pErk oscillator is low, at the position
where the Notch oscillator is high (Fig. 3.8A; these states are defined in terms of partic-
ular phases of the two oscillators, for more details see methods section).

symmetric model results In figure 3.8C and D, simulations with this model are shown
without left-right asymmetry. The top pictures only show PSM, somites and somite
boundaries, while the bottom pictures show the phase of the Notch oscillator at the time
of somite formation. Note that we do not assume that this reflects the final rostro-caudal
polarity of the somites. Indeed, differences in the frozen Notch oscillator phase between
different simulations easily arise due to different frequencies in the anterior-most cells
at the time of somite formation, indicating that this would not represent a robust somite
polarity patterning mechanism (compare the two simulations in figure 3.8C).

In principle, this model does not need a threshold morphogen level to determine where
somitogenesis can occur like the zebrafish model does; the two oscillators suffice, since
the frequency profile ensures that the peak of Notch only coincides with a low phase
of the global oscillator in the anterior, where the Notch oscillator has slowed down
(Fig. 3.8B). Under these conditions, the frequency profile of the Notch oscillator de-
termines the size of somites. The behaviour of the model without such a threshold is
shown in figure 3.8C. It can be observed that only a single peak of Notch travels across
the tissue at any given time, while experiments suggest that there could be an additional
wave of Notch initiating right before somite formation (Niwa et al., 2011). Incorporating
an FGF8 threshold (above which somitogenesis is inhibited), allows for more than one
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peak to form because it can delay the moment at which somites can be formed, retaining
multiple travelling waves in the PSM (Fig. 3.6C, Fig. 3.8C).

Figure 3.8. The two-oscillator model. A) The frequency profile of the “global” pErk os-
cillations and the travelling-wave Notch oscillations. B) The formation and freezing of a
wave in the two-oscillator model. The Notch oscillator forms a travelling wave towards the
anterior, which creates a new somite when the pErk oscillation is at its minimum. We ignore
somite polarity formation. Cartoon inspired by (Saga, 2012, Yabe and Takada, 2016). C)
Examples of somitogenesis with the two-oscillator model. First row: without an FGF level
threshold at which somitogenesis can take place. tailbud oscillation period: 120 minutes, σ:
10, FGF decay: 0.002, frequency profile exponent: 2.5. Second row: same parameters, but
now with with an FGF level threshold at which somitogenesis can take place. threshold: 0.1
a.u.
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pErk dynamics in absence of RA Currently, we lack data on the pErk dynamics in
absence of RA, and hence in the presence of left-right asymmetries. While we know that
the domain of FGF expression extends further anterior in the right PSM (Vermot et al.,
2005) and that the frequency of Her oscillations is decreased, it is unclear whether or
not pErk oscillates symmetrically and with what frequency. We tested two possibilities:
either pErk oscillations remain symmetric with a frequency corresponding to the Notch
oscillator frequency in the left tailbud, or pErk oscillations on the right become slower
than on the left, with both sides having a frequency corresponding to the Notch oscillator
in the tailbud at the respective sides. In both scenarios we incorporated a lower frequency
for Notch oscillations on the right, and a lower morphogen decay.

asymmetric model results: symmetric pErk When the pErk oscillation frequency is
assumed to remain symmetric (but the Notch oscillations are not), somite formation can-
not be delayed on the right: the timing is determined by pErk, which still reaches low
levels simultaneously on the left and right. The slower Notch oscillations lead to a num-
ber of very large somites on the right, followed by some very small somites after the sym-
metry in morphogen decay and Notch oscillation frequency is restored (Fig. 3.9A, top). A
delay on the right can be created by adding the threshold morphogen level for somite de-
termination mentioned before. When the asymmetry sets in, the lower morphogen decay
on the right causes an increase in morphogen (FGF/Wnt), which can force somitogenesis
to skip one or more cycles because the entire right PSM is still above the threshold. This
however leads to a sustained lagging of somitogenesis on the right, even upon return to
symmetric parameter values (Fig. 3.9A, middle). This means that symmetry is never re-
stored, unlike what is observed experimentally. Addition of a second, lower morphogen
threshold, which forces somitogenesis to happen regardless of the phase of either pErk
or Notch oscillator, resolves this by allowing the right PSM to catch up with the left
(Fig. 3.9A, bottom, Video 4).

Although both thresholds seem reasonable, the lower threshold does leave open the
question of how polarity will be established in the somites formed by the passing of this
threshold. The transition from undetermined to determined tissue is now created by a
smoothly anterior-to-posterior retracting wavefront dictated by FGF8 dynamics, instead
of blocks of tissue being sectioned off into a somite simultaneously due to the posterior-
to-anterior passing of a wave of Notch expression. The phase of the Notch oscillator
when this smooth wavefront passes may somehow still aid in the determination of rostro-
caudal somite polarity and boundary formation (as is the case in the simple model). On
the other hand, the second threshold could explain why aberrant tissue determination
is observed in some mouse embryos that are mutant for RA production (Vermot et al.,
2005).
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Figure 3.9. FGF levels determining somite formation are required for correct repro-

duction of LR phenotypes. Legend indicates the different cell types; “threshold frozen” are
the cells that stopped oscillating due to the passing of the explicit FGF threshold rather than
the somitogenesis mechanism. A) Simulations where pErk oscillations are symmetric. The
first FGF threshold, restricting where somitogenesis can take place, is required to create a
delay. The second, a minimum FGF level required to keep cells in a non-determined state, is
required to restore somite symmetry after frequency and FGF decay on the right have gone
back to normal. B) Simulations where pErk oscillations are asymmetric. No thresholds are
required to create a delay, but the minimum FGF level is required to restore symmetry. The
threshold for somitogenesis has no effect (not shown here, identical phenotype to the top.
Used parameters: normal period: 120 minutes, asymmetric period on the right: 150 minutes.
Normal FGF decay: 0.005/minute, right-hand FGF decay: 0.002/minute; first threshold: 0.2
a.u.; second threshold: 0.05 a.u.; σ: 10; exponent: 2.5. Start of asymmetry after 6 formed
somites, end after 4 more somites are formed on the left.
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Figure 3.9. C) Tuning the decay rate with symmetric pErk dynamics does not yield sym-
metric somite formation. FGF decay rates on the right: 0.003 and 0.004. D) Tuning the
decay rate with asymmetric pErk dynamics can lead to delayed but symmetric formation of
somites, except for altered polarity in the region where the catching-up mechanism has acted.
The different rows have different durations of the asymmetric regime (3, 4 or 5 cycles). FGF
decay is 0.004. See also Supp. Fig. S3.4 for tuning with larger frequency differences.

asymmetric model results: asymmetric pErk When the pErk oscillation frequency is
instead assumed to be asymmetric, a delay forms naturally by the slower progression of
somitogenesis on the right, as seen before with the zebrafish model (compare Fig. 3.7C
to Fig. 3.9B). Adding the first morphogen threshold for somite determination does not
change this phenotype (not shown). This delay persists upon return to symmetric oscilla-
tions, and the lower morphogen threshold which forces somite formation, is still required
to catch up and restore symmetry. As in zebrafish, we can tune the morphogen decay rate
such that somite formation is fairly symmetric, but only up to the point when the para-
meters are restored to symmetric values. Then, either the somites become irregular, or
the passing of the lower threshold causes cells to stop oscillating regardless of the pErk
and Notch oscillator phases, which again makes somite boundaries and polarity unclear
(Fig. 3.9D, Supp. Fig. S3.4, Video 5). Note that such tuning of FGF8 decay and oscillator
frequency asymmetry is impossible in the simulations with symmetric pErk, where some
somites are always somewhat larger or smaller than on the left. Furthermore this cannot
be improved by an additional tuning of the onset of morphogen decay asymmetry with
respect to Notch frequency asymmetry, like we did with the simple model (Fig. 3.9C).

conclusion Experiments are needed to determine which of the possible behaviours of
pErk actually occurs. For now, the asymmetric option appears more likely, as it implicitly
incorporates the feedback between the Notch and pErk oscillations that is also hinted
at by experimental evidence (Hayashi et al., 2009, Niwa et al., 2011): slower Notch
oscillations lead to slower pErk oscillations. Another advantage is that the delay between
left and right arises naturally and does not require the skipping of a full round of somite
formation, which can only be obtained by substantially increased FGF levels. In contrast
to the zebrafish model, the mouse model does not allow the formation of fully symmetric
catch-up somites. In zebrafish, the multiple Notch waves travelling in the PSM naturally
allow formation of "catch-up" somites when the FGF wavefront shifts back to a normal
position on the right. In mouse instead, normal somite patterning depends on both the
Notch and pErk oscillations and this catch-up mechanism is absent. A secondary FGF
threshold is needed to induce formation of catch-up somites in a manner distinct from
normal somite formation.
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Table 3.2. Outcome of different somitogenesis models for left-right asymmetry in different organisms

organism simple model zebrafish model 2 oscillator model

chick correct phenotype n.a. n.a.

zebrafish yes, but hard to obtain symmet-
ric formation of all somites ->
have to tweak onset of different
asymmetries.

yes; can obtain symmetric somites,
natural origin of delay

n.a.

mouse yes, but have to hard-code the delay
on the right

n.a. yes; natural origin of delay have to
assume presence of two thresholds
for somitogenesis. Asymmetric
pErk dynamics more likely79
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3.2.3 Somitogenesis and left-right signalling interactions

In the models above, we imposed the asymmetric conditions of reduced oscillation
frequency and an extended morphogen gradient. To improve our understanding of asym-
metric somitogenesis, we will need to develop more detailed, mechanistic models for the
interaction between the left-right signalling pathways and somitogenesis. Here, we make
a start by characterising the left-right pathway using a dynamical systems perspective
(François and Siggia, 2012, Verd et al., 2014). We propose the following simple model:
there is a regulatory sidedness module that (under normal conditions) endows mesoderm
cells with either a left or a right sided identity. We assume that the module functions such
that each identity locally enhances itself while repressing the opposite identity, (gen-
erating bistability), while at a distance each identity induces the other identity and/or
represses its own identity (ensuring lateral inhibition) (Fig. 3.10A). The sidedness mod-
ule can be interpreted as a symmetrical extrapolation of known Nodal-Lefty interactions,
in which Nodal locally reinforces its own expression while, through Lefty, repressing
its own expression at the other side of the midline and hence ensuring opposite identity
there. We assume that left-right signalling occurs upstream of this sidedness module,
biasing the module such that left-identity always arises on the left (Fig. 3.10B).

The sidedness module uses, and may therefore bias, signalling components involved
in somitogenesis such as FGF, Wnt and Notch (Meyers and Martin, 1999, Nakaya et al.,
2005, Raya et al., 2003). For instance, FGF8 is required to confer right-sided identity
in chick, and left-sided identity in mouse (Meyers and Martin, 1999); Notch is required
for left-sided identity, and is asymmetrically expressed on the left side of the node in
chick embryos (Raya et al., 2003). RA is required to buffer these effects, and it has
been shown that a protein involved in RA signalling (Nr2f2) is biased to the left side in
chick embryos, and to the right in mouse embryos (Vilhais-Neto et al., 2010). It thus
seems likely that the left-right pathway is also responsible for the biased expression of
Nr2f2, thus taking care of both the bias and the buffering. If the RA buffering machinery
were also downstream of the sidedness module, we would expect that somitogenesis
remains symmetric even when the left-right signal upstream of the module is disturbed.
However, it has been shown that in about 46% of embryos without this upstream signal
(H+/K+ATPase), somitogenesis is asymmetric, with no clear left-right bias (Kawakami
et al., 2005). From this, we infer that RA signalling is more directly downstream of the
left-right signal, not the sidedness module (Fig. 3.10B).

Using this model, we can explain a loss of left-right asymmetry from a malfunction-
ing of the sidedness module, causing both sides to obtain a similar identity that is either
all-left, all-right or none/mixed. If RA is absent, the biases in FGF, Wnt and Notch in-
troduced by the module are not compensated and somitogenesis is asymmetric, always
in the same direction. When the upstream left-right signal is disturbed, the sidedness
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Figure 3.10. A simplified model for the interactions between the left-right pathway and

somitogenesis. A) Our model includes a sidedness module which is able to generate asym-
metry spontaneously. A typical example contains two components that exert a short-range
inhibition on each other, but activate each other over a longer range. In the left-right path-
way in particular, this module could be made up of Nodal and Lefty. Wherever Nodal is
upregulated, it amplifies itself and upregulates Lefty genes both in the lateral plate mesoderm
(LPM) and the notochord. Lefty then inhibits Nodal in the right LPM, thus conferring a
right-handed identity through a lack of Nodal. B) Normally, the sidedness module receives
input from an upstream left-right pathway, involving H+/K+ATPase, nodal flow etc. This
pathway upregulates Nodal on the left, thus forcing the balance of the module. We hypothes-
ise that RA is regulated separately by this upstream pathway. The other signalling pathways
of somitogenesis influence, and are influenced by, the sidedness module.

module confers random left-right identity and RA is also biased randomly, but independ-
ent from this module. By chance, the RA bias and the sidedness module can end up
aligned so that RA can buffer the effects of the module: somitogenesis then remains
symmetric. In other cases RA ends up on the wrong side, not buffering but exacerbat-
ing the random asymmetries caused by the independent action of the sidedness module.
This biased asymmetry due to blocking RA signalling, and randomly oriented asymmetry
with low penetrance due to blocking the left-right signalling pathway, agrees with exper-
imental observations (Kawakami et al., 2005). Furthermore, this model predicts that the
asymmetric phenotype arising from a perturbed upstream signal is more severe than the
asymmetric phenotype upon blocking of RA signalling.
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While the proposed model thus can already explain some important aspects of asym-
metric somitogenesis, it clearly represents just a starting point. To firmly tie this model
to our models of somitogenesis, we need to have a more mechanistic understanding of
how the left-right pathway influences oscillation frequency and anterior extent of the
determination wavefront and how these effects are being buffered by RA. An interest-
ing candidate for affecting both oscillator frequency and wavefront is sonic hedgehog
(SHH), an important player in the left-right pathway that has been shown to influence
FGF8 expression as well as influence somitogenesis clock speed via inhibition of Gli2/3
(Resende et al., 2010). Since RA was also shown to inhibit Gli2/3 (Resende et al., 2010),
this suggests a means for RA to buffer the oscillation frequency impact of the left-right
pathway. Similarly, since FGF8 and RA are mutually antagonistic, this would also offer
a potential explanation for RA mediated buffering of the influence of the left-right path-
way on wavefront position. However, the story is likely to be more complicated. First, it
is clear that SHH and FGF play different roles in left-right signalling in different species
(Meyers and Martin, 1999). Second, while in mouse and zebrafish both clock speed and
wavefront are affected by the left-right pathway, these changes are likely to arise at least
partly independently given the fact that in chicken only clock speed is affected by the
left-right pathway (Vermot and Pourquié, 2005).

3.3 Discussion

A precise, reproducible and symmetric progression of somitogenesis is of crucial im-
portance for vertebrate fitness, as evidenced by the severely disabling effects of con-
ditions such as scoliosis. Still, although there is a rich tradition of developing models
aimed at obtaining a better understanding of vertebrate somitogenesis, thus far models
have neither been applied nor developed for understanding left-right asymmetry. In the
current paper we undertook the first steps in developing such models. In addition, we
investigated the relevance of somite determination, the mechanism by which oscillations
start to cease and somite boundaries are pre-patterned, for explaining the different left-
right asymmetry phenotypes observed for different vertebrate model species.

In the classical clock-and-wavefront model formulated by Cooke and Zeeman, oscilla-
tions fully terminate upon encountering the wavefront, simultaneously across all cells
forming the future somite. Specification of somite polarity is not considered in this
model. In later clock-and-wavefront models, oscillations cease in a cell by cell man-
ner upon encountering the wavefront, and cells are assumed to memorise their oscillator
phase. The memorised phase differences are assumed to specify both somite boundaries
and within somite polarity. In some models this ceasing of oscillations and memorising of
phase is simply superimposed (Jaeger and Goodwin, 2001, Morelli et al., 2009), while in
others the wavefront induces a transition from oscillatory to bistable behaviour (François
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et al., 2007, ten Tusscher and Hogeweg, 2011), or arises emergently from a Hopf-Turing
bifurcation (Cotterell et al., 2015, Meinhardt, 1982) or as a result of coupling to non-
oscillating cells (Murray et al., 2011). In all these models, oscillations cease right at the
onset of somite boundary determination.

In the current study we started out with a model in which the superimposed wave-
front leads to oscillator stopping and phase memorisation (Morelli et al., 2009). We also
developed 2 new models. In the first, intended to mimic zebrafish somitogenesis, we
incorporated the experimental observation that the early somite boundary marker pErk
decreases its expression in discrete, somite wide jumps in a Notch oscillation dependent
manner (Akiyama et al., 2014). With this model we show how a progressive delay can
arise in somitogenesis in the right PSM following a decrease in oscillation frequency and
an increase in the anterior extent of the wavefront, and how symmetry can be restored
once left-right signalling terminates. This model reproduces the experimental observa-
tion that within an individual pre-somite, oscillations halt in a posterior-to-anterior man-
ner (Shih et al., 2015); it also predicts such a P-A progression for removal of pErk (and
Tbx6 (Wanglar et al., 2014)) at the future somite boundaries, thus offering an explanation
for the step-wise posterior shifts of the pErk domain boundary.

In the second model, representing mouse conditions, we incorporated the experimental
observation that pErk displays oscillations which do not slow with distance from the
tailbud, and that somite boundary determination occurs when pErk levels are low, again
in a Notch oscillation dependent manner (Niwa et al., 2011). Using this model, we
show how the developing asymmetric phenotype depends on both the asymmetry in FGF
levels as well as the assumed pErk dynamics in the delayed, right-hand PSM. If, similar
to notch oscillations the pErk dynamics are also assumed to be slower in the right PSM,
this model behaves similar to the zebrafish model, generating a progressive delay in right-
hand somite formation. However, here this delay arises from slowing of pErk rather than
Notch oscillations. A difference between the zebrafish and mouse model is that while in
the zebrafish model "catch-up" somites are formed with normal polarity information, this
is not the case in the mouse model, in agreement with experimental observations (Vermot
et al., 2005).

In the two new models, somite determination occurs without a memorisation of oscil-
lator phase. Since waves of Notch signalling set the pace of somite formation, somite de-
termination occurs in a posterior to anterior manner, thus potentially providing alternative
somite polarity information. Indeed, recently a two somite periodicity was observed to
result from oscillator slowing and was proposed to contribute to the formation of sharply
delineated somite boundaries and anterior-posterior polarity (Shih et al., 2015). Note
that our second model resembles another two-oscillator somitogenesis model, that was
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recently proposed to explain somite size scaling (Beaupeux and François, 2016). A not-
able difference between this model and the model we propose here is that rather than
boundary determination arising from a particular size of the phase difference between the
two oscillators, in our model determination occurs only if the two oscillators are simul-
taneously in a specific phase, as suggested by experimental data (Harima and Kageyama,
2013).

In vertebrates, the interactions between Wnt,FGF and RA determine the position of
the determination front (Aulehla and Pourquié, 2010, Diez del Corral et al., 2003), and
RA is involved in maintaining somite symmetry. Still, RA is not necessary for somite
formation to occur. In amphioxus, the model species representative of the cephalochord-
ate sister group of the vertebrates, somites form close to the tailbud and somitogenesis is
asymmetric(Schubert et al., 2001). It was shown that FGF8 is not required for the form-
ation of the posterior somites in amphioxus (Bertrand et al., 2011), FGF and RA do not
interact (Bertrand et al., 2015) and RA is not able to generate symmetric somitogenesis.
It thus appears that the FGF-RA antagonism evolved to ensure symmetric somitogenesis
in vertebrates (Bertrand et al., 2011, Brent, 2005). Another striking difference between
amphioxus and vertebrate somite formation is that in amphioxus somite determination
occurs relatively close to the tailbud, whereas in vertebrates there is a large PSM between
the tailbud and the determination front. This extended PSM may have arisen as a side
effect of the evolution of the FGF-RA antagonism. Alternatively, the extended PSM
may be essential to allow sufficient time and space for buffering small asymmetries and
have been directly selected for. Clearly, much remains to be discovered on the function
of the extended PSM, the PSM spanning oscillator frequency gradient and the resulting
travelling waves for somite determination and symmetry.

Our study shows how differences in somite determination dynamics between the dif-
ferent vertebrate species may contribute to their diverse asymmetric phenotypes. Thus,
the asymmetric phenotype arising in absence of RA provide additional information that
can be used to further decode the underlying developmental mechanism. Indeed, our
results suggest that rather than focusing on a catch-all mechanism in all vertebrate spe-
cies and assuming that species differences merely reflect neutral developmental systems
drift, we should keep an open mind for the possibility of functionally significant species
differences.
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3.4 Methods

3.4.1 Clock and wavefront model

We model the presomitic mesoderm (PSM) as a 2D strip of cells. In the posterior the
cells form a single coherent tissue representing the tailbud, more anteriorly the cells form
two strips of tissue flanking the notochord (Fig. 3.2A). Each individual cell is endowed
with an internal oscillation clock that is represented by a simple sinusoidal phase oscil-
lator, as described in (Ares et al., 2012, Jaeger and Goodwin, 2001, Morelli et al., 2009,
Murray et al., 2011) (Fig. 3.2A). At the tissue level a frequency profile is assumed to
dictate oscillation frequency as a function of position in the PSM. In contrast to previous
work, we do not investigate the interaction between intrinsic oscillations and cell-cell
coupling, nor do we apply noise (Ares et al., 2012, Herrgen et al., 2010, Morelli et al.,
2009, Murray et al., 2011); we therefore do not include cell-cell coupling of oscillations
for simplicity. The angular frequency of the oscillator in each cell thus only depends on
its position in the PSM, with the following relation:

ω(x) = ω0 ∗ (1−
1

σn
∗ xn) (3.1)

where ω(x) is the angular frequency at a certain distance x away from the posterior end
of the PSM (Fig. 3.2B). ω0 is the oscillation frequency of cells at the posterior end of the
PSM, and σ is the length over which the frequency will drop to 0. Usually σ is taken to
be the PSM length, unless otherwise indicated. Finally, n is the exponent that determines
the nonlinearity of the frequency profile: the higher the exponent, the further anterior
in the PSM the frequency will start decreasing and the steeper the slope will be. When
cells become incorporated into a (pre)somite at the anterior end of the PSM, they stop
oscillating while memorising their phase.

Cells are continuously added at the posterior end of the PSM, and the oscillators
of these new cells are assumed to obtain the phase and frequency of the cells already
present there (Fig. 3.2A). The anterior wavefront of somite determination travels toward
the posterior at the same speed as cells are added, so that the PSM maintains a constant
size (Morelli et al., 2009). The frequency profile shifts along, so that cells experience
a progressively lower oscillation frequency, until the wavefront passes and their phase
becomes frozen (Fig. 3.2B). We adapt this model of somite formation as we go on to
account for differences between animals in the next section.

left-right differences When we implement left and right differences, we change the
frequency ω0, and/or the extent of the frequency profile σ differently in the left and right
PSM, which results in different behaviour for the left and the right somites (Fig. 3.2C).
Often, the left side is kept the same as the starting conditions, for reference. We always
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start the simulations with the same ω0 and σ on the left and the right, then “switch on”
the difference after a few somites have been formed. The asymmetry is then maintained
until the end of the simulation, unless otherwise indicated.

3.4.2 Extended models

As a first step in extending the above described model, we incorporate an explicit de-
scription of FGF/Wnt (morphogen) decay driven gradient dynamics (Aulehla and Pour-
quié, 2010) and how this subsequently influences the frequency profile. Individual model
cells i contain a specific level of morphogen M . This level is set to a constant value of
1. in the tailbud and slowly decays in all other cells in the PSM, yielding an exponential
posterior-to-anterior gradient:

dMi

dt
= −decay ∗Mi (3.2)

We do not include diffusion of morphogen in our model.

Next, we describe how the frequency gradient f depends on the morphogen level using
the following relation:

f = f0 ∗
M2

M2 + 1/β2
(3.3)

where β determines the morphogen concentration at which the frequency has decreased
to half its value in the tailbud. The combination of the exponential morphogen gradi-
ent with the above non-linear function for the oscillator frequency, generates similarly
shaped frequency profiles as the one used in our earlier simpler model (figure 3.6A).

We implement the observed asymmetry in anterior extent of the FGF gradient by ad-
justing FGF/Wnt decay rates. We assume that the decrease in oscillation frequency in
the right PSM arises independent of FGF/Wnt and model it through a decrease in the
maximum of the frequency profile. The rationale for this assumption is that an increase
in FGF on the right as observed in zebrafish and mouse would be expected to have a
speeding up, rather than slowing down, effect, which contradicts the asymmetric phen-
otype. Furthermore, that other factors besides FGF/Wnt are known to affect oscillation
frequency more strongly (Resende et al., 2010).

Zebrafish model

We extended our model to explicitly model zebrafish somite patterning dynamics
based on experimental data (Akiyama et al., 2014, Wanglar et al., 2014). These ex-
perimental data suggest that cells transition through a sequence of discrete states before
transforming into a fully determined somite. Oscillating cells start out in a “pErk high,
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Tbx6 high” state in the posterior PSM. As FGF levels drop beyond a certain level a first
wave of Her expression causes cells to transition to a “pErk low, Tbx6 high” state, pre-
patterning the S-IV-S-V somite boundary. A next wave of Her expression causes cells to
transition to a “pErk low, Tbx6 low”. Subsequent waves of Her expression are likely to
induce further, not yet characterised, transitions in gene expression demarcating further
differentiation until the S0 stage is reached and a fully determined somite forms. It is
only in this final stage that oscillations are observed to cease (Shih et al., 2015).

In the model, FGF dropping below a certain threshold value can easily be accom-
modated with the incorporation of explicit FGF (morphogen) dynamics. We simulate
the passing of a wave of Her expression as the passing of a particular oscillator phase
(sin(ωt) > 0.95), and termination of this wave is simulated with a contrasting oscil-
lator phase (sin(ωt) < −0.95). For simplicity, we only model the transition from the
“pErk high, Tbx6 high” state to the “pErk low, Tbx6 high” state and subsequently to the
“pErk low, Tbx6 low”, ignoring additional transitions to less well known states. In our
model, oscillations cease and full somite determination occurs upon transition cells from
the “pErk low, Tbx6 high” state to the “pErk low, Tbx6 low” state and termination of
the Her expression wave (sin(ωt) < −0.95). Note that by skipping the less well known
transitions in our model, oscillator termination and somite determination occur 3 clock
cycles earlier than in reality. Still, the model at least captures the early boundary forma-
tion that also occurs in reality, as cells transition from the “pErk high, Tbx6 high” to the
‘pErk low, Tbx6 high” state.

Mouse model

Our formulation of a two-oscillator model for mouse somitogenesis is based on ex-
perimental observations from Niwa et al. and Harima and Kageyama (Harima and
Kageyama, 2013, Niwa et al., 2011). We incorporate a “global oscillator” which os-
cillates with the same phase and frequency across the entire PSM, as an approximation
of the pErk dynamics observed in mouse. In the tailbud region, we assume that the global
oscillator cycles at the same frequency as the travelling wave oscillator, while setting it a
quarter phase (−0.5π) behind to allow the first wave to travel for a full oscillation cycle.
Experimental observations indicate that somite boundary patterning occurs when pErk
levels are low and Notch levels high. In more abstract terms this means that the two
oscillators should each be in a specific phase and this should occur simultaneously. We
simulate this in our model by imposing that when the global oscillator is in the “low”
(sin(ωt) < −0.9) part of its cycle, the region where the travelling wave oscillator is high
(sin(ωt) > 0.9) – and all the tissue anterior to this region – stops oscillating and are
transformed into a somite.
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In addition to the above requirements for somite patterning, we can incorporate a
threshold FGF (morphogen) level above which somites cannot form despite pErk levels
being low and Notch levels being high. This additional threshold effectively delays
somite formation and can lead to the formation of multiple travelling waves in the PSM.
On top of this we can add a second, lower FGF threshold which works in the opposite
direction: When the level of FGF in cells drops below this level, somite patterning ensues
regardless of the phase of the global and travelling wave oscillators.

Table 3.3. Parameter values

parameter values remarks
clock-and-wavefront model

chick ω0 0.070 min−1 maximum oscillation frequency in
tailbud

mouse ω0 0.052 min−1
zebrafish ω0 0.21 min−1
chick n 2 exponent of quadratic equation

governing frequency profile
mouse n 3
zebrafish n 2
σ 60 cells length of frequency profile

zebrafish model

normal ω0 0.21 min−1 asymmetric frequency values
indicated in figure legends

normal FGF decay 0.005 min−1
FGF threshold for somite
formation

0.15 a.u. unless otherwise indicated

β 10 determines at which FGF concen-
tration the frequency decreases

two-oscillator model

mouse ω0 0.052 min−1
chick ω0 0.070 min−1
mouse n 2.5
chick n 2
normal FGF decay 0.005 min−1
β 10 determines at which FGF concen-

tration the frequency decreases
FGF inhibitory threshold for
somite formation

0.2 a.u.

FGF forcing threshold for
somite formation

0.05 or 0.075
a.u.

Slightly higher threshold required
for chick simulations
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Figure S3.1. The clock and wavefront model for mouse asymmetric somitogenesis. We varied the anterior shift of the wavefront on the
right side, the reduction in frequency, and the number of cycles for which the asymmetric conditions last (including the period during which the
wavefront shifts).
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Figure S3.2. The clock and wavefront model for zebrafish asymmetric somitogenesis. We varied the anterior shift of the wavefront on the
right side, the reduction in frequency, and the number of cycles for which the asymmetric conditions last (including the period during which the
wavefront shifts).
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right asym. freq: +7 min,
right asym. decay -0.001

original

Modified right asym. decay:

-10%

-5%

+5%

+10%

right asym. freq: +15 min,
right asym. decay -0.0015

right asym. freq: +30 min,
right asym. decay -0.0025

Figure S3.3. The extended model for zebrafish asymmetric somitogenesis is robust to small changes in the decay rate in the right PSM.

During asymmetric conditions, there are combinations of lower right-hand frequency and FGF decay rate which lead to symmetrically formed
somites. We varied this “perfect” asymmetric decay rate to test the robustness of the symmetric somites. Here we see that often, a 10% deviation
still yields relatively symmetric somites. Occasionally, the “modified” decay rate is actually more symmetric.
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Figure S3.4. The extended mouse model has difficulty obtaining fully symmetrically

formed, delayed somites. Here we show asymmetric somitogenesis with different asym-
metric values for the right-hand FGF decay rate, relative to the left value (0.005/min). Left
oscillation period is 120 min. Black denotes the start of asymmetric conditions, the white dot
the end. Asymmetric conditions start after 6 cycles and end after another 4.
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3.5 Movies

Movies

Video 1: Simulation of asymmetric chick somitogenesis with basic model. After 5
oscillation cycles, the position of the determination front is shifted anteriorly by 2
somites on both sides. The oscillation period on the right is increased from 90 min.
to 105 min. After 6 additional cycles (of 90 min.), the frequency and determination
front position are shifted back to normal values. Anterior to the left.

Video 2: Simulation of asymmetric mouse somitogenesis with basic model. After
4 oscillation cycles, oscillation period on the right is increased from 120 min. to
150 min. After another cycle (of 120 min.) the position of the determination front
is shifted anteriorly by two somites on the right, and one somite on the left. When
the wavefront shift is complete, the parameters return to symmetric values (after
two cycles).

Video 3: Simulation of asymmetric zebrafish somitogenesis with extended model.

After 20 oscillation cycles, the oscillation period on the right is increased from 30
min. to 45 min and the morphogen decay is decreased from 0.005 a.u. min.−1 to
0.003325 a.u. min−1. After 5 additional cycles these parameters are restored to
normal values.

Video 4: Simulation of asymmetric mouse somitogenesis with extended model;

symmetric pErk. After the formation of 1 small and 6 normal somites (10 cycles
from the start of the simulation), the oscillation period on the right is increased
from 120 min. to 180 min., and the morphogen decay is decreased from 0.005
to 0.002. After 4 cycles, these parameters are restored to normal values. Other
parameters as in figure 3.9A, bottom.

Video 5: Simulation of asymmetric mouse somitogenesis with extended model;

asymmetric pErk. After the formation of 1 small and 6 normal somites (10 cycles
from the start of the simulation), the oscillation period on the right is increased
from 120 min. to 150 min., and the morphogen decay is decreased from 0.005
to 0.004. After 5 cycles, these parameters are restored to normal values. Other
parameters as in figure 3.9D, bottom.
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Chapter 4. Evolutionary stages of sequential segmentation

Abstract

The evolution of animal segmentation is a major research focus within the field of
evolutionary-developmental biology. Most studied segmented animals generate their seg-
ments in a repetitive, anterior-to-posterior fashion coordinated with the extension of the
body axis from a posterior growth zone. In the current study we ask which selection
pressures and ordering of evolutionary events may have contributed to the evolution of
this specific segmentation mode. To answer this question we extend a previous in-silico

simulation model of the evolution of segmentation by allowing the tissue growth pat-
tern to freely evolve. We then determine the likelihood of evolving oscillatory sequential
segmentation combined with posterior growth under various conditions, such as the pres-
ence or absence of a posterior morphogen gradient or selection for determinate growth.
We find that posterior growth with sequential segmentation is the predominant outcome
of our simulations only if a posterior morphogen gradient is assumed to have already
evolved and selection for determinate growth occurs secondarily. Otherwise, an alternat-
ive segmentation mechanism dominates, in which divisions occur in large bursts through
the entire tissue and all segments are created simultaneously. Our study suggests that
the ancestry of a posterior signalling centre has played an important role in the evolu-
tion of sequential segmentation. In addition, it suggests that determinate growth evolved
secondarily, after the evolution of posterior growth. More generally, we demonstrate the
potential of evo-devo simulation models that allow us to vary conditions as well as the
onset of selection pressures to infer a likely order of evolutionary innovations.
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4.1 Introduction

Segmentation, the division of the animal body plan into multiple, repeating units, has
fascinated evolutionary and developmental biologists alike. Only the vertebrates, arth-
ropods and annelids display overt body segmentation while several other clades show
intermediate levels of segmentation in only a subset of tissues or organs, a property
called metamerism (Balavoine and Adoutte, 2003, Davis and Patel, 1999, Peel and Akam,
2003). Repetitive patterning is studied in most detail in overtly segmented animals. In
these clades, segments are typically laid down in a regular anterior-posterior sequence,
via a process involving posterior growth (also called terminal addition) and periodic,
sequential generation of segments (Couso, 2009, Peel and Akam, 2003). A famous ex-
ception is the fruitfly Drosophila in which segments are laid down simultaneously across
a preformed body axis.

It is currently unresolved why segmented animals mostly display this superficially
similar, sequential mode of segmentation. This issue is partly related to the question of
whether segmentation was present in the bilaterian ancestor, either as overt segmentation
or as metamerism, or rather that it evolved multiple times in parallel in the different lin-
eages (Balavoine and Adoutte, 2003, Blair, 2008, Budd, 2001, Chipman, 2010, Couso,
2009, Davis and Patel, 1999, Jacobs et al., 2005, Minelli and Fusco, 2004, Richmond
and Oates, 2012, Seaver, 2003, Tautz, 2004, Wanninger et al., 2009). Arguments in fa-
vour of a single origin of segmentation include the prevalence of sequential segmentation
(Couso, 2009, Peel and Akam, 2003). Studies using ancestral state reconstruction suggest
that this mode of segment addition via posterior outgrowth represents ancestral bilaterian
properties (Gold et al., 2015, Jacobs et al., 2005). In addition, the three segmented lin-
eages have shared genes involved in segmentation, such as Notch, Engrailed, and Wnt
(Couso, 2009, Rivera and Weisblat, 2009, Tautz, 2004, Williams et al., 2012). Argu-
ments in favour of parallel evolution of segmentation instead put forward that there are
also large differences in the genes responsible for segmentation and that the limited ob-
served overlap in gene usage could be explained by parallel recruitment from the limited
developmental genetic toolbox (Chipman, 2010). The precise mechanisms of cell divi-
sion, axial elongation and sequential segmentation also differ substantially between these
lineages, ranging from teloblastic growth and stereotyped cell divisions in annelids and
some crustaceans (Balavoine, 2014, Shankland and Seaver, 2000), to posterior growth
zones in most insects and vertebrates (Bénazéraf and Pourquié, 2013, Peel, 2004) with
variable roles of cell division versus cell rearrangement (Mayer et al., 2010, Nakamoto
et al., 2015). Furthermore, multiple segmentation processes can take place in different
body regions or tissue types even within a single organism, each with their own evolu-
tionary origin (Graham et al., 2014), which further supports (partial) parallel evolution.
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Still, independent of whether sequential segmentation evolved once or multiple times,
we can ask whether certain factors or conditions may have contributed to this partic-
ular evolutionary outcome. Earlier evo-devo simulation studies have demonstrated that
sequential segmentation represents a robust evolutionary outcome with high future evolu-
tionary potential (François et al., 2007, Fujimoto et al., 2008, ten Tusscher and Hogeweg,
2011), suggesting evolutionary advantages of this particular segmentation mode. In ad-
dition, prior evolutionary events may have generated biases or constraints that influenced
the likelihood of the evolution of sequential segmentation. For example, evolutionary
comparisons show that a posterior signalling region characterised by caudal, Wnt and
FGF signalling predates the origin of the bilaterians (Niehrs, 2010). Furthermore, it was
recently suggested that posterior growth through terminal addition was already present
in the bilaterian ancestor (Gold et al., 2015). Thus, we may ask whether these properties
have played a decisive role in sending evolution down the path of evolving sequential
segmentation.

In the current study we aim to answer these questions. For this we substantially ex-
tended a previously used in silico model (ten Tusscher and Hogeweg, 2011). Rather than
superimposing a particular growth pattern, we incorporate a gene controlling cell divi-
sion and let evolution determine the type of tissue growth dynamics that arises. Then,
by varying whether or not a stable posterior signalling centre is present in simulations,
we can investigate the role of such a signalling centre on the type of growth and segmen-
tation that evolves. We thus substantially expanded the degrees of freedom available to
the evolutionary process, allowing us to investigate under which conditions sequential
segmentation is the most likely evolutionary outcome.

We observe two predominant evolutionary outcomes: sequential segmentation with
posterior growth, and simultaneous segmentation involving tissue-wide bursts of divi-
sions. We find that the likelihood with which the strategies evolve, depends on the type
of imposed morphogen dynamics and the strength and timing of an evolutionary pressure
for determinate growth. We show that a self-organised posterior signal is more difficult
to evolve than a developmental strategy which does not rely on such a posterior centre.
From this we conclude that the prior evolution of a posterior signalling centre has played
a decisive role in determining the evolution of sequential segmentation. Furthermore,
we demonstrate that an evolutionary pressure for determinate growth reduces the like-
lihood of evolving sequential segmentation. When we apply this evolutionary pressure
after sequential growth and segmentation have evolved, a mechanism to stop growing can
evolve which is coordinated with the pre-existing sequential segmentation. We therefore
propose that the order of evolutionary events is key to inferring the likelihood of partic-
ular developmental strategies. Reversing the argument, our work strongly suggests that
a posterior signalling zone evolved prior to segmentation, and that sequential growth and
segmentation evolved prior to determinate growth.
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Figure 4.1. Overview of the model. A) The developing individuals live on a 2D lattice.
Each individual consists of a row of cells. The genome of the individual codes for a network
of regulatory interactions, which determines the spatio-temporal dynamics of the proteins
within each cell (see D). B) The initial conditions for each new individual at the start of
its development. There is a growth zone with high morphogen, and a ’head’ region without
morphogen. The morphogen dynamics may vary. Either they are imposed, yielding persistent
posterior morphogen (left): the morphogen is kept at a high level in the posterior-most cell
while decaying in the other cells; or the morphogen can become regulated by the network, so
that only the initial conditions are specified (right). C) Divisions are regulated by a division
protein; when its level passes a threshold, the cell can divide. Upon division, the level of the
division protein in both daughter cells is halved, but not the level of the other proteins. D) At
the end of development, the expression of the segmentation gene is averaged over a number of
time steps, and from this the segment boundaries are determined. E) The mutational operators
acting on the genome.

4.2.1 The model

General setup

We extend an existing individual based model of a population of organisms evolving
on a lattice (ten Tusscher and Hogeweg, 2011) (Fig. 4.1A). Each organism possesses a
so-called “pearls-on-a-string” genome consisting of genes encoding transcription factors
(TFs) and upstream regulatory regions with transcription factor binding sites (TFBS)
(Crombach and Hogeweg, 2008). At birth, organisms consist of a short one-dimensional
row of cells which grows through the course of the individual’s development. An indi-
vidual’s probability of reproduction (fitness) depends on the number of segments present
in its gene expression pattern after a predefined amount of developmental time.
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Individuals

Genome, network The genome codes for a regulatory network with the genes repres-
enting the nodes, and the TFBS as the regulatory links (edges) between nodes (Fig. 4.1A).
These regulatory interactions can be repressive or activating. This network governs gene
expression dynamics and hence protein levels. Gene expression dynamics are modelled
with ordinary differential equations as shown in eq. (4.1):

dGi/dt =
input2

input2 + 1
∗ Ei − di ∗Gi

input =MAX(0.,
∑

j

wj ∗G
2
j

G2
j +H2

j

)
(4.1)

Transcription of a gene is determined by the summed input of all activating and repress-
ing TFBS regulating this gene, where the influence of each individual TFBS is assumed to
depend on TF concentration in a saturating manner. Ei is the maximum expression level
of gene i and di is the degradation rate of the resulting protein; both values can evolve.
wj is the weight determining the strength with which TF j influences the expression of
gene i; this weight is negative (-1) for repressing TF and positive (+1) for activating TF,
the sign of these weights is subject to evolution. Hj represent the evolvable Hill con-
stants of the TFBS, where the Hill constant corresponds to the level of the TF at which
half-maximal activation or repression occurs. The expression of all genes of the same
type (see below) are summed into a single protein level.

Developmental tool kit and initial conditions There are 16 types of genes, indicated
with a number from 0 to 15.
Gene 0 is the morphogen: unless indicated differently, it is not regulated by any of the
other genes, thus corresponding to a maternal input. It is kept at a high expression level
in the posterior-most cell, while decaying with a predefined rate in the rest of the embryo
(Fig. 4.1B). In a subset of simulations instead, this high posterior expression is only used
as an initial condition and is thus not automatically maintained in the posterior-most cell,
and the gene may become regulated by other genes.
Gene 1 and gene 2 are signalling genes, responsible for direct, membrane bound cell-
cell signalling (similar to e.g. Delta-Notch signalling). This direct cell-cell signalling is
implemented as follows: if a gene has TFBS of type 1 or 2 in its upstream region, the
expression of that gene in a particular cell is regulated by the levels of protein type 1 or 2
in its directly neighbouring cells, while its own intracellular levels of these proteins have
no impact on the expression of that gene but only on that of genes in neighbouring cells.
If cell-cell signalling is switched off in a simulation, gene 1 and 2 function as normal
genes.
Gene 4 is the division gene: when it is highly expressed (protein level > 80. a.u.), the
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cell may divide with high probability (p=0.975). Upon division, the level of only the
division gene is halved in the resulting two daughter cells (Fig. 4.1C).
Gene 5 is the segmentation gene, whose final pattern of gene expression along the body
axis determines the fitness of the organism.
Individuals start their development with a short row of 10 cells, where the posterior cell
forms the primordial “growth zone” in which the morphogen level is high; in the remain-
ing 9 cells (the "head" that is assumed to have evolved prior), the morphogen is absent
(Fig. 4.1B). At the start of development genes 6 and 7 are uniformly expressed in the
zygote; while other genes have an initial expression level of 0. Throughout development,
the protein levels are updated according to the network (Eq. 4.1).

Fitness evaluation At the end of development (after a fixed number of time steps),
the number of well-formed segments determines an individual’s fitness. A segment is
defined by the average expression pattern of the segmentation gene over the last 20 or 40
developmental steps (Fig. 4.1D). This averaging helps ensure the evolution of temporally
stable segmental patterning, as it will not reward oscillatory segmentation that fails to
converge on a constant spatial pattern (as occurred in (Fujimoto et al., 2008)). Segments
should be at least 7 cells wide, and boundaries between segments should consist of a clear
transition of the expression of the segmentation gene from a high to a low level, or vice
versa, within 5 cells (similar to earlier definitions (François et al., 2007, ten Tusscher and
Hogeweg, 2011). The number of too-narrow segments is subtracted from the number of
well-formed ones, reducing the fitness. To further ensure stability of the final develop-
mental pattern we apply an additional fitness penalty for the amount of variance of the
pattern from the average (pattern instability) within the final 20 developmental steps.

In a subset of simulations, some fitness can also be obtained by reaching a target tissue
size. This fitness bonus is independent from the number of segments, enabling sequential
as well as simultaneous evolution of tissue size and segmentation. We also apply some
penalties unrelated to the segments. First, we require that at least one gene of each type
is present in the genome; if this requirement is not met, the individual is not allowed to
reproduce. Second, a penalty is applied when the individual grows larger than the target
final tissue size. Finally, small fitness penalties are used for gene and TFBS numbers in
order to prevent excessive genome growth. The fitness then becomes emax(0,F ) − 1.

F =nr good segments

− nr narrow segments

+ proximity to target size

−G ∗ gene nr

− T ∗ TFBS nr

− U ∗ nr unstable cells

(4.2)
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See table 4.2 for all parameter values.

Evolution

Initial conditions, mutations and simulations The population is initialised with 50
genetically identical individuals. The population resides in a grid of size 30x30, im-
posing a maximum to the population size of 900 individuals. The genome of the initial
individuals contains a single copy of each gene, in randomised order and with an aver-
age of 2 TFBS of random type upstream. Individuals compete for reproduction into a
neighbouring empty spot. Those with a higher fitness have a larger probability of being
selected. Specifically, an individual’s chance to reproduce is proportional to its fitness
divided by the sum over the fitness of itself and the other individuals neighbouring the
empty position. Death occurs with a constant probability. Upon reproduction, the gen-
ome is mutated via duplications and deletions of both genes and TFBS (Fig. 4.1D). TFBS
may also mutate their type (which protein binds), weight (activating or repressing) and
Hill constant, and new TFBS may appear de novo as an innovation. Genes may mutate
their maximum activation level E and decay rate d. Gene duplication also copies the
associated TFBS, and results in multiple genes of the same type. The expression of all
genes of the same type therefore contributes to the expression level of a single protein.
Note that since there are no mutations that change the gene type, gene duplication can
not be followed by subsequent divergence in our model.

Analysis

For each set of model settings and parameter values we run 50 simulations. Each simu-
lation yields one particular growth and segmentation strategy with only minor variations
within the population. Therefore, we only assess one fit individual per simulation. We
consider a simulation successful when the fittest individuals at the end of the simulation
can generate more than 3 segments.

space-time plots We use space-time plots as a first impression of the developmental
mechanisms that evolved. Because we simulate 1D tissues, we can simply place snap-
shots of the tissue at many consecutive time points below each other, while keeping the
position of the head fixed at the anterior. We display two types of space-time plots; in
one, we denote the cell type of each cell with a colour, which represents a unique com-
bination of gene expression values; in the other, cell divisions are depicted by making the
newest cells white (in a division, we always consider the posterior daughter cell as the
newest, so the anterior daughter stays black). See for example Fig. 4.2.
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pruning Because an evolved genome consists partly of redundant interactions, we
prune the genomes via a repeated process of removing genes and binding sites in the
genome, while keeping the tissue size and final spatial expression pattern of the segmen-
tation gene the same (ten Tusscher and Hogeweg, 2011). This makes it easier to analyse
the network by eye and identify the role of the special genes such as the division gene
and the segmentation gene. All networks depicted are pruned.

assessment of phenotypic variability We have only one source of noise in our simu-
lations, namely the small probability that a cell with high division gene expression does
not immediately divide. Still, this noise may cause some variability in the number of
segments that are formed, even if the genome remains exactly the same. We call this
phenotypic variability, and assess this by repeating the development of an evolved in-
dividual 50 times and counting the number of good and malformed segments formed
each time. We display the results of this repeated development in a histogram, where
we indicate the number of malformed segments with lighter bars. When an individual
evolved a mechanism that makes the same number of good segments in 40 or more times
out of 50 repeated developments, we call it “developmentally robust”. Note that this dif-
fers from the probability of breeding true (mutational robustness): we do not assess how
mutations influence the likelihood of producing the same number of segments, as done
in (Salazar-Ciudad et al., 2001a).

In table 4.1 we display the number of times certain segmentation strategies evolve, and
the average number of segments made per strategy. We take the phenotypic variability of
an individual into account by averaging number of segments it makes during the repeated
development mentioned above. These average numbers for single simulations are then
averaged over all simulations in which the same developmental strategy evolved.

division gene dynamics In some figures, we display the dynamics of the division gene
in the posterior-most cell (containing a high morphogen level). These dynamics result
from regulation of the division gene by other genes, and from halving of the division
gene upon division. In order to see the effect of regulation more clearly, we also show
the network dynamics when the halving of the division gene is left out.

Modelling choices

Body axis segmentation is, like most developmental patterning, a complex phe-
nomenon involving processes ranging from the subcellular to the organism level scale.
In this study we simulate the evolution of body axis segmentation and therefore need to
simulate development in a population of individuals across many generations. To keep
our model tractable both in terms of simulation time and for analysing the evolutionary
trajectories of the developmental processes, we substantially simplify the developmental
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processes in our model relative to real world developmental processes, but incorporate
those properties we deem necessary for studying the evolution of segmentation. Below
we detail the three major simplifications, their potential consequences, and why we think
these simplifications are justified.

The most obvious simplification is the 1D nature of the model, so that cell divisions
automatically lead to an elongated body axis regardless of where they occur in the tissue
- basically assuming that the axiality is already defined. In reality, developmental pat-
terning occurs in a 2D or 3D tissue, where complex symmetry breaking events during
early development are essential for setting up the anterior-posterior and dorsal-ventral
axis. Furthermore, animal axis elongation often involves cellular motility and adhesion
properties that are not included in this model. This limits the self-organisation potential
of the developmental processes evolving in our model. However, since symmetry break-
ing is an ancestral property preceding bilaterian evolution (Niehrs, 2010), we can safely
assume that it already existed before segmentation evolved.

We model a cellularised environment in which morphogen gradients are set up through
decay dynamics, and signalling is limited to direct receptor-ligand type cell-cell sig-
nalling. Neither the morphogen nor any of the other gene products are subject to diffu-
sion. Diffusion plays an important role in Turing-type patterning (Meinhardt, 1982), and
in setting up the morphogen gradients dictating early Drosophila segmentation (Pankratz
and Jäckle, 1990). Still, in Drosophila genes downstream of the morphogen gradients do
not require diffusion, and so far no Turing patterns have been found to underlie animal
segmentation. Segmentation usually takes place in a cellularised environment, in which
the role of diffusion is necessarily restricted to short distances or combined with other
gradient establishing mechanisms such as slow mRNA and protein decay (Aulehla and
Pourquié, 2010). Thus, we are confident that we do not exclude any major real world
segmentation mechanisms from evolving in our model, and that leaving out diffusion is
justified.

Finally, our model only incorporates gene expression regulation through combinator-
ial TF regulation on a single regulatory region, ignoring several other factors that may
influence gene expression. In vertebrates for instance, the timing of Hox gene mediated
axial patterning, and its coordination with segmentation, involves chromosome looping,
epigenetic histone and DNA modifications, and cluster level gene regulation (Mallo and
Alonso, 2013). Still, the goal of our study is to explore the evolution of gene expression
dynamics, rather than to mimic how these dynamics are precisely regulated. The tran-
scription factor based regulatory network has sufficient degrees of freedom to allow the
evolution of the diverse gene expression dynamics (such as oscillations) that underlie real
world segmentation processes, while supporting computational efficiency and analytical
tractability.
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polar growth: divisions only occur in cells close to the anterior or posterior end of the
tissue, in which case we also speak of anterior or posterior growth, respectively.

Glossary

tissue-wide growth: divisions occur throughout the tissue.

simultaneous segmentation: multiple segments are formed at (roughly) the same time.

sequential segmentation: segments are formed successively in an anterior-to-posterior
progression.

indeterminate growth: When divisions are not arrested by the end of the predefined
development period, but could (in principle) continue indefinitely.

determinate growth: When divisions cease before the end of development, yielding a
fixed tissue size.

persistent posterior morphogen: the persistent presence of the morphogen is
superimposed in the posterior-most cell where it is neither subject to regulation nor
decay; it decays in non-posterior cells inheriting the morphogen through division.

transient posterior signal: At the start of development, the morphogen gene (0) is
present in the posterior-most cell; there it decays, as in its daughter cells inheriting
morphogen through divisions. See figure 1B.

model input:

simulation results:

tissue-wide growth

posterior growth

simultaneous segmentation

sequential segmentation

indeterminate growth

tim
e

spaceA P

posterior signalling centre: persistent morphogen signal emanating from the posterior-
most cells; in our simulations this may arise from a persistent posterior signal or from a
transient posterior signal if regulatory interactions have evolved leading to a persistent
signal demarcating the posterior end of the tissue.
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4.3 Results

4.3.1 Evolutionary strategies with transient posterior signal

To investigate the relevance of the prior existence of a stable posterior signalling centre
and the morphogen gradients emanating from it for the evolution of posterior growth and
sequential segmentation we performed simulations that do and simulations that do not
superimpose the existence of such a signalling centre. We start with an exploration of
evolving segmentation strategies in the absence of a superimposed morphogen gradient
(Fig. 4.2A, inset). Instead, we assume transient expression of gene 0 (the “morphogen”),
restricted to the posterior-most cell of the embryo, and subject to decay in all cells. As
a consequence, this gene will have the same level in the posterior cell as in all cells that
descended from it and information on tissue polarity becomes quickly diluted. Under
these conditions, a stable posterior signalling centre would have to evolve from scratch
by evolving regulation of this transient signal to generate a stable posterior morphogen
gradient (rather than being automatically present (François et al., 2007, ten Tusscher and
Hogeweg, 2011)). Alternatively, a segmentation mechanism could evolve which does not
rely on a persistent posterior signal.

We perform four sets of 50 simulations: with/without cell-cell signalling (CCS), and
with/without division noise (first four rows in Table 4.1). The simulations without CCS
and without noise form a negative control group which does not have any symmetry-
breaking mechanism: indeed, segmentation never evolves. In the remaining sets with
either noise, CCS or both, segmentation does evolve. The vast majority of successful
simulations (yielding more than three segments) evolves a segmentation strategy in which
the tissue grows via one or more short-lived tissue-wide burst of divisions (Fig. 4.2A).
The segments all appear roughly at the same time after the burst of divisions; we call this
simultaneous segmentation.

In absence of CCS and presence of division noise, this simultaneous segmentation
mechanism typically yields high phenotypic variability, often generating few segments
and only occasionally producing many segments (e.g. Fig. 4.2B, see Methods). The
segments are often irregular in size, with some much wider than others. The segmentation
mechanism uses the stochastic delay of division in a few cells early in development,
which changes the dynamics in those cells sufficiently to differentiate them from their
neighbours (Fig. 4.2C and D). This mechanism therefore does not resemble Drosophila-
type simultaneous segmentation but rather reflects the fact that the evolutionary process
is free to evolve any possible growth and patterning modes.
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Figure 4.2. Transient posterior signal without CCS yields only simultaneous segmen-

tation. A) Space-time plots of successfully evolved individuals, who mainly differ in the
timing and number of tissue-wide division bursts. The right-most case only occurred once.
The colour coding in the top row indicates cell type (based on the levels of all proteins), the
white dots in the bottom row indicate new (just-divided) cells (see also Methods). Inset: The
initial conditions of the morphogen dynamics used in these simulations. The head cells do
not divide. The posterior-most cell has high morphogen concentration, which is inherited by
its daughters. The morphogen gene can be regulated by the evolving network, just like any
other gene, but is not regulated initially. (...)109
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Figure 4.2. (...) B) The development of evolved individuals is not robust. The histogram
depicts the number of bands generated when the development of a single evolved individual
is repeated 50 times (see Methods). Lighter bars indicate the number of too-short segments.
Examples of the resulting development shown above with space-time plots of the divisions,
with as inset the expression pattern of the segmentation gene. C) Division timing plays a
role in determining segment position. Cells which by chance happened to divide a bit later
(circled in orange) form a lineage with high expression of the segmentation gene. D) time
plots that show the dynamics in a high-segmentation gene stripe (left) and a low stripe (right).
Note the changes in concentration of the division gene due to divisions.

In the presence of CCS instead, simultaneous segmentation does not require cell divi-
sion noise: 37 out of 50 simulations with CCS and without noise evolve segments, while
39 simulations with both CCS and noise yielded segmentation (see Table 4.1). In simula-
tions with CCS, the average number of segments is doubled compared to the simulations
without CCS. Moreover, 13 out of the 39 successful simulations with noise and CCS
yield low phenotypic variability, meaning that they are able to make the same number of
segments in more than 40 out of 50 repeated developments; we call this developmentally
robust (Fig. 4.3A). Six of the simulations with CCS evolve simultaneous segmentation
which uses cell-cell signalling to split developing segments in two (Fig. 4.3A). This is an
alternative to the wave splitting mechanism observed in Turing pattern systems(Crampin
et al., 2002), as the evolved segment-splitting mechanism only relies on signals from
direct neighbours rather than feedbacks between diffusive substances. In the presence of
CCS, we also find the rare evolution of polarised growth: in two cases the head region
is used as a signalling centre for divisions and gene expression oscillations (Fig. 4.3B).
One simulation with CCS and without division noise evolves divisions that are restricted
to a broad posterior zone, from which a number of segments appears sequentially (Supp.
Fig. S4.2). This mechanism uses signalling from the formed segments to an undifferen-
tiated zone to initiate localised division bursts which then yield new segments.

Altogether, without a superimposed posterior morphogen gradient we obtain a nearly
100% bias towards simultaneous growth and patterning, with the rare appearance of po-
larised growth. We therefore next test whether a polarised growth dynamics evolves
more frequently if we select for tissue size but not for segmentation, thereby reducing
the complexity of the selection target. By only selecting for tissue size, the majority of
simulations still evolves tissue-wide division bursts as with simultaneous segmentation.
We observe anterior growth (with or without initial division burst) in 6 out of 50 simula-
tions, posterior growth in 4 cases (in 2 of which posterior growth is combined with a large
initial tissue-wide division burst) and a combination of anterior and posterior growth in
2 out of 50 simulations (Fig. 4.4). In these cases, divisions are restricted to the posterior
cell because it has only one neighbouring cell and thus receives less inhibitory signal,
and a morphogen gradient never evolves. Polarised growth on one end of the tissue thus
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seems a rare evolutionary outcome, given its low frequency even for a simpler selec-
tion target. Our results show that without a superimposed posterior morphogen gradient,
evolution is unlikely to result in posterior growth and sequential segmentation.
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Figure 4.3. With CCS, different segmentation mechanisms can evolve. (transient signal,

CCS) A) This individual uses cell-cell signalling at the boundaries of an emerging segment to
split the segments in two. The segmentation gene and the division gene are maintained only
in the two boundary cells of this primordial segment, because they receive different input
from their neighbours. The division gene then generates a new burst of divisions in that cell,
expanding the single cell into a new segment. (...)
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Figure 4.3. (...) This mechanism piqued our interest because it superficially resembles the
splitting of the odd stripes in Tribolium (Sarrazin et al., 2012). It provides an alternative to
Turing-like wave splitting in growing media (Crampin et al., 2002), which uses diffusive sig-
nalling over longer distances, while this segment-splitting mechanism uses only direct CCS.
Another difference is that in the Turing mechanism, the wave splitting results from growth,
while here segment splitting directs divisions. Although cell divisions are thought to play
a minor role in the axis extension of Tribolium, tissue wide divisions have been observed
that could support the segment-splitting mechanism we find here (Nakamoto et al., 2015).
In Tribolium however, segment addition happens sequentially, while segment splitting here
occurs in simultaneously generated segments. Furthermore, the mechanism in Tribolium is
distinctly asymmetric: the secondary stripe that splits off is considerably narrower than the
primary stripe. It thus remains an open question which mechanism causes segment doubling
in Tribolium: Turing-like, the mechanism described here, or an as yet unidentified mech-
anism. B) This individual uses signalling cues emanating from the static head to stimulate
divisions in the cell adjacent to the head. The graph depicts the gene expression oscillations
that occur in this cell, which subsequently pattern the tissue. In the networks, the division
gene is circled in magenta, the segmentation gene in blue and the signalling genes in yellow.

1 11 1
4 4 4 4

2
4 4
head

4

A B C

Figure 4.4. Selection only for tissue size occasionally yields anterior or posterior growth

(transient signal, CCS) Examples of individuals which evolved anterior growth (A), pos-
terior growth (C) or a combination of the two (B) in the absence of selection for segments
(as described in the main text). A) Anterior growth exploits the fact that the head does not
express gene 0 (morphogen) and does not divide; therefore it accumulates division protein
(4). The head thus functions as a signalling centre. C) Posterior growth uses the fact that the
posterior-most cell has only one neighbouring cell and thus receives less cell-cell signalling.
The signalling genes 1 and 2 are circled in yellow, and the division gene in magenta.
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4.3 Results

4.3.2 Evolutionary strategies with persistent posterior signal

Next, we performed two sets of simulations with a persistent posterior signal, in the
form of a superimposed posterior morphogen gradient: one set with and one without
cell-cell signalling, and both with division noise (Table 4.1). To achieve this, the pos-
terior most cell now receive a morphogen that is subject to decay in all cells except this
posterior-most cell. In these simulations, we find two qualitatively different strategies.
The majority of simulations (53 out of 100) evolves a posterior growth zone combined
with sequential segmentation, while the tissue-wide burst with simultaneous segmenta-
tion observed in the previous section is now less common (30 out of 100).
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Figure 4.5. Three different types of sequential segmentation can evolve. (persistent

signal, no CCS) A) In these simulations, the morphogen is highly expressed in the posterior-
most cell. If that cell divides, morphogen expression is maintained in the posterior daughter,
and its level decays in the other cells. B-D) Space-time plots, networks and division-gene
dynamics of different types of sequential segmentation. In the networks, the morphogen is
circled in yellow, the division gene in magenta and the segmentation gene in blue. In the
graphs, the division gene dynamics are depicted only for the posterior-most cell, with high
morphogen level. The red line shows the network dynamics if halving of the division protein
due to divisions is taken into account. The blue line depict the dynamics if the network is
run without halving the division protein once it reaches the division threshold. B) a smoothly
growing individual. Note how the division gene is only regulated by the morphogen. C)
“wavy” posterior growth. The growth zone keeps dividing, but sometimes its daughters also
divide. Note the oscillating expression of the division gene in the posterior-most cell. D)
“stair-like” posterior growth. The division gene strongly oscillates, and is therefore regularly
low even in the posterior cell.
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In the simulations with CCS we also find combinations of the simultaneous and sequen-
tial mechanism, where the first few segments are generated using a simultaneous mech-
anism, and the remaining segments arise through posterior growth combined with gene
expression oscillations (5 simulations).

Often, the evolved sequential segmentation mechanisms are very developmentally ro-
bust with only small phenotypic variations, and they yield a large number of segments
with a regular pattern (Table 4.1 and Fig. 4.5). Typically, gene expression oscillations
in the growth zone are used to pattern the segments, resembling the mechanism in ver-
tebrates and arthropods. We distinguish three common variations, differing in the dis-
tribution of divisions in space and time (Fig. 4.5B-D). When growth proceeds smoothly,
the division gene is only regulated (directly or indirectly) by the morphogen (Fig. 4.5B).
Other variants of posterior growth and sequential segmentation show a wavy or even
stair-like growth pattern, reflecting non-continuous, burst-like division dynamics of the
posterior growth zone. In these cases the division gene itself oscillates, with low amp-
litude in the wavy pattern or high amplitude in the stair-like pattern (Fig. 4.5C,D). These
oscillations are caused by regulation of the division gene by other genes in the network
that are part of the segmentation oscillator. In Supp. Fig. S4.4 we discuss some non-
robust cases of sequential segmentation; there, the division gene is itself a part of the
oscillator, making the oscillator sensitive to the stochastic nature of the divisions.

In absence of CCS, a posterior morphogen gradient improves the developmental ro-
bustness of the evolved simultaneous patterning mechanisms (Supp. Fig. S4.3, table 4.1).
Cells may use differences in morphogen concentration rather than the differences arising
through stochastic cell division for segmental patterning (in fact, division noise is now
only a source of phenotypic variability). While adding CCS to simulations with transi-
ent posterior morphogen decreased phenotypic variability, in the presence of persistent
posterior morphogen no further improvement was observed upon addition of CCS.

So far, we selected for increasing numbers of segments, thus only implicitly selecting
for tissue growth. However, it can be hypothesised that body axis elongation -even in the
absence of subdivision into segments- already confers an evolutionary advantage. We
therefore compare the previously described simulations in which we selected only for
segmentation (the set without CCS), to simulations in which we independently select for
both axial elongation (to a particular target size) and segmentation. While the number of
simulations yielding sequential mechanisms is the same (31), we now find that 8 simu-
lations yield the combined simultaneous and sequential strategy, and only 6 simulations
yield fully simultaneous segmentation. Thus, the bias towards sequential segmentation
has become somewhat stronger.
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The evolved developmental mechanisms look similar between the set with and the
set without selection for axial elongation, but we find that the evolutionary trajectories
that lead to these strategies differ markedly between the sets (Fig. 4.6). When we select
for both axial extension and segmentation, in all simulations we first see the evolution
of body axis extension to obtain a tissue close to the target size, and subsequently the
evolution of a subdivision of the body axis into segments (Fig. 4.6A).
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Figure 4.6. The order of evolutionary events differs between simulations with and

without selection for axial extension. (persistent signal, no CCS) Graphs depict the evo-
lution of final tissue size and segment number for one simulation. Left column: sequen-
tial segmentation, right: simultaneous segmentation. The colour of the nodes indicates the
evolutionary time point. A) Evolutionary trajectories when selecting for axial extension and
segmentation: tissue size evolves first to target size before segmentation evolves. B) Only
selection for segments. For sequential segmentation, growth happens in phases. First the
available tissue evolves to be filled with segments before tissue size increases further. For
simultaneous segmentation, tissue size and number of segments evolve concurrently, but the
process is noisy. Note the increased robustness towards the end of the simulation.
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If instead selection is only on segment number, we see differences in the evolution
of tissue size between simultaneous and sequential segmenters (Fig. 4.6B). In the sim-
ultaneous case, tissue size increases concurrently with segment number, although the
evolutionary sequence is erratic due to the high phenotypic variability of the segmenta-
tion mechanism. At later evolutionary time points, we observe a decrease in the variation
in tissue size and segment number (Fig. 4.6B). In the case of sequential segmentation,
we instead observe a repeated sequence of first evolving a certain tissue size, and sub-
sequently evolving the subdivision of this tissue with an increasing numbers of segments
(Fig. 4.6).
We conclude that, of the possible evolutionary options to segment a tissue, posterior
growth coupled to sequential segmentation has a higher potential to be a robust pattern-
ing mechanism, and is capable of generating more and more regularly shaped segments.
In addition, when incorporating an ancestral posterior signalling centre involved in body
axis polarity, it is also the most likely evolutionary outcome. This likelihood slightly
increases when body axis extension evolves prior to segmentation.

4.3.3 Evolving determinate growth

From the previous section, it is clear that posterior growth with sequential segmen-
tation is the most successful of the possible developmental strategies: it evolves more
often, it is able to form many and regularly shaped segments, and has the potential to be
developmentally robust. So far, we did not take into account that the evolved sequential
segmentation mechanisms do not terminate growth at the end of development. Instead
they evolve a growth rate that is tuned to allow them to grow to the target size within
the constant, superimposed duration of development. If this duration of development
were to be extended, larger individuals with a larger number of segments would auto-
matically arise. While there are indeed bilaterian animals (like many annelids) which do
continue growing indefinitely (Balavoine, 2014), most animals stop growing and making
segments, for instance vertebrates and insects have a determinate number of segments
and roughly determinate growth. We therefore decided to include selection for determ-
inate growth, by applying a fitness penalty for division during the last 20 time steps (no
CCS). (Note that the definition applied here for determinate and indeterminate growth is
somewhat different from definitions used elsewhere (Harper et al., 1986). See also the
glossary.)

With increasing strength of this evolutionary pressure, a larger fraction of simula-
tions yields simultaneous growth and segmentation, until the bias is completely reversed
(Fig. 4.7A). In a subset of simulations stair-like sequential growth evolves, which allows
for sequential growth while circumventing the fitness cost of late-stage divisions. Only
very rarely (max 4 out of 50) does a simulation yield sequential segmentation with a
mechanism that leads to the controlled halting of growth (Fig. 4.7A, space-time plots).
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Figure 4.7. The time of onset of selection for stopping growth influences evolutionary

outcome. (persistent signal, no CCS) A) The frequency with which simulations evolve sim-
ultaneous segmentation, increases with stronger selection pressures to stop growing. Only
rarely do individuals evolve with determinate sequential segmentation. B) When the selec-
tion pressure to stop growing is added after segmentation has evolved, sequential segmen-
tation with determinate growth more frequently evolves. The number of simulations which
switch to simultaneous growth does still increase with increasing selection pressure. 20 se-
quentially growing individuals were allowed to continue evolution with the added pressure.
The selection pressure required to effect a change is higher; the period over which divisions
are penalised is now also 40 steps instead of 20.

We reason that by applying the selection for determinate growth from the start of the
simulation, we implicitly select for simultaneous growth, which is indeed determinate.
To prevent this bias, sequential segmentation would have to have evolved before the ap-
pearance of this selection pressure. It also seems biologically reasonable to assume that
determinate growth is a secondary trait: when comparing segmented animals with in-
determinate and determinate growth, it seems that at least in arthropods the clades with
determinate growth have more evolutionary derived, complex body plans. We speculate
that determinate growth becomes more important upon evolution of segment specifica-
tion, where e.g. locomotive appendages are limited to trunk segments and the abdomen
is unsupported. To test the idea of secondary selection for determinate growth, we ex-
tract individuals from 20 earlier simulations in which sequential segmentation evolved
without the pressure to stop growing; then we continue their evolution in the presence
of this pressure. The outcome of these continued simulations depends on the strength of
the evolutionary pressure to stop growing. If the pressure is too low, determinate growth
does not evolve often (Fig. 4.7B). If instead the pressure is too high, the potential for
growth and segmentation is often transiently lost after which a simultaneous mechanism
evolves instead; we do not observe smooth transitions from sequential to simultaneous
segmentation (Fig. 4.7B). However, between these two extremes lies a parameter region
in which one-third of simulations evolve the capacity to stop growing while maintaining
posterior growth and sequential segmentation (Fig. 4.7B). Thus, our hypothesis is con-
firmed, delaying selection for determinate tissue growth to a later evolutionary stage does
indeed more often yield the evolution of sequential growth and segmentation combined
with determinate growth.
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In some of the cases where determinate growth evolves, the functional gene regu-
latory network expands to include a control gene. The expression of this control gene
slowly increases over time until it passes a threshold and shuts down the division gene
(Fig. 4.8A). This becomes evident in the different gene expression pattern in the last seg-
ment (Fig. 4.8A). More often however, the stopping mechanism relies on an oscillating
gene that passes a threshold due to the slight stochasticity in divisions and shuts down
the division gene (Fig. 4.8B). This latter mechanism yields large phenotypic variability,
while the former mechanism is more reliable (Fig. 4.8C).

Developmental programs incorporating the first stopping mechanism (gene expression
build-up) become slightly less robust compared to the original sequential segmentation
mechanism without stopping growth, as stochastic divisions may influence the time at
which the growth stopping protein level is being reached (Fig. 4.8C). Developmental
programs applying the second mechanism (stochastic threshold passing) become signi-
ficantly less robust, which logically follows from the fact that they rely on the stochasti-
city of divisions to determine when to stop (Fig. 4.8C). Note that in both cases segment
size does remain regular.

Table 4.1. Evolved developmental strategies.
Left number: number of simulations yielding this mechanism (figure nr).
Right number: average number of segments generated with this mechanism

simulation set simultaneous sequential other failed
Transient no CCS 39 (4.2,S4.3) 3.2 0 0 11
posterior no CCS, no noise 0 0 0 50
morphogen with CCS 34 (4.3,S4.1) 6.8 2 (4.3) 10.0 3 9.1 11

with CCS, no noise 32 8.4 1 (S4.2) 13 4 9.3 13
Persistent no CCS 15 (S4.3) 6.4 31 (4.5,S4.4) 12.1 0 4
posterior with CCS 15 6.9 22 12.3 7 9.1 6
morphogen tissue size selection 6 6.4 31 12.7 8 10.9 5
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Figure 4.8. Mechanisms to stop growing differ in phenotypic variability (persistent sig-

nal, no CCS) A-B) Individuals capable of sequential segmentation, that are subsequently
subjected to a pressure to stop growing. A) This individual stops growing by increasing the
expression of gene 1 over time. Note the addition of the extra module for stopping growth
in the network. B) This individual stops growing because gene 5 stochastically passes a
threshold, above which its expression stabilises and switches off the division gene. C) The
individual of (A) maintains its developmental robustness (left histogram), the one in (B)
doesn’t (right histogram). Both had very low phenotypic variation before the addition of the
extra selection pressure, looking like the left histogram.

119



Chapter 4. Evolutionary stages of sequential segmentation

4.4 Discussion

A number of previous modelling studies has looked into the evolution of segmenta-
tion (see (ten Tusscher, 2013) for review) (François et al., 2007, Fujimoto et al., 2008,
Salazar-Ciudad et al., 2001a). These studies mainly focused on the evolution of sequen-
tial segmentation (as in vertebrates or short-germ insects) versus simultaneous segmen-
tation (long-germ insect, Drosophila-like), investigating their similarities and suggesting
potential evolutionary transitions. In the current study, we took a somewhat different
approach, focusing on factors that may have contributed to the likelihood of evolving
sequential segmentation. We aimed to explain its dominance as a segmentation mechan-
ism and the order of events through which it arose. Taking a “worse-case approach”, we
maximally allowed alternative mechanisms to evolve, and then determined under which
conditions posterior growth and sequential segmentation predominates.

We found one main alternative developmental strategy besides sequential segmenta-
tion: simultaneous segmentation, in which after a short tissue-wide burst of divisions all
segments appear roughly at the same time. This simultaneous mechanism is not similar
to Drosophila-like segmentation, where a hierarchy of gene regulation robustly creates
regular-sized segments. Note that the Drosophila strategy likely evolved secondarily,
from an initial sequential segmentation mode, so one should neither aim nor expect a
Drosophila-like segmentation to evolve from scratch in our simulations. Rather, the
evolution of a quite different type of simultaneous segmentation in our simulations is
a result of the freedom of the evolutionary process, which we use to distinguish evolu-
tionary scenarios. The simultaneous strategy that evolved in our simulations generates
irregularly sized segments, and the number of segments in genotypically identical indi-
viduals tends to be variable. In contrast, the evolved sequential segmentation generates a
large number of regularly sized segments in a robust, reproducible manner, thus leading
to larger fitness values at the end of evolutionary simulations. A number of subtypes
of posterior growth and sequential segmentation evolved; the most notable mechanism
involves regular, segmental oscillation dependent bursts of cell division in which two
segments are down simultaneously - another benefit of the larger degrees of freedom of
the model.

Stable posterior signalling is a prerequisite for sequential segmentation We showed
that evolution of terminal addition type posterior growth is highly unlikely in the absence
of persistent posterior signalling, independent of whether we selected for segmentation
or body axis elongation. Under these conditions, the potential for symmetry breaking is
restricted to the early phases of development, generating a bias in favour of an early tissue
wide burst of divisions and against posterior growth. In absence of cell-cell signalling,
simulations relied on the stochasticity of divisions to generate segments. In the pres-
ence of cell-cell signalling, lateral inhibition type patterning is used to pattern segments
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during the tissue wide division burst. Our results thus suggest that the evolution of a
posterior signalling centre is a crucial prerequisite for the evolution of posterior growth
and sequential segmentation. Given the presence of a posterior signalling centre in all
bilaterians as well as cnidarians, it can be safely assumed to represent an ancestral prop-
erty (Martin and Kimelman, 2009, Niehrs, 2010, Petersen and Reddien, 2009). Thus,
we can reformulate our findings and state instead that the prior evolution of a posterior
signalling centre provided a strong bias towards the evolution of posterior growth and
sequential segmentation.

persistent posterior signal?

yes no

selection for
determinate growth?

no

immediately

secondarily

sequential segmentation
with indeterminate growth

sequential segmentation
with determinate growth

simultaneous segmentation

Figure 4.9. Summary of conclusions Flowchart summarising the results of different simu-
lations. Note that the arrows only indicate the majority of simulations in a set, e.g. persist-
ent posterior signal without determinate-growth selection occasionally yields simultaneous
growth as well.

Determinate growth as a secondary trait In simulations incorporating a persistent
posterior morphogen signal, selection for determinate growth completely reversed the
evolutionary bias from sequential to simultaneous segmentation. We found that to evolve
posterior yet determinate growth, the selection for determinate growth had to occur sec-
ondarily, after the evolution of posterior growth and sequential segmentation. Simple
segmented animals such as millipedes and annelids contain large numbers of highly sim-
ilar segments and many annelids appear to keep adding segments throughout their life
(Balavoine, 2014). In contrast, insects and vertebrates develop a smaller, constant num-
ber of highly specialised segments after which posterior growth is terminated. We thus
hypothesise that a constant segment number evolved secondarily, and was only selec-
ted for once segment specialisation arose and locomotive capabilities became restricted
to a limited number of segments. Consistent with this, HOX genes, which are crucial
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in segment specialisation, appear to be involved in terminating posterior growth (Young
et al., 2009). As an intermediate form, myriapods and the extinct trilobites stop adding
segments when reaching maturity, but the final number of segments is variable (Jacobs
et al., 2005). This has been linked to their limited segment specialisation, where the exact
number of segments is not that important. This is reminiscent of the form of determinate
growth that evolves in our simulations, which is not robust and yields variable segment
numbers.

Still, how to explain the fact that many unsegmented and metameric animals display
determinate growth, for instance C. elegans? Assuming an unsegmented bilaterian an-
cestor, determinate growth may have evolved prior to sequential segmentation. In the
current study we did not explicitly test for this, however we expect that even if we selec-
ted for only axial tissue growth without segmentation, simultaneous growth would arise
if we also immediately selected for determinate growth. Given that ancestral state recon-
structions suggest that terminal addition is an ancestral bilaterian trait (Gold et al., 2015,
Jacobs et al., 2005) while the evidence is less conclusive for sequential segmentation,
we would expect that determinate growth at least evolved secondary to posterior growth.
Alternatively, the presence of determinate growth in unsegmented and metameric organ-
isms can be explained by the presence of a bilaterian ancestor displaying terminal addi-
tion, sequential segmentation and determinate growth with many lineages subsequently
completely or partly losing segmentation. Finally, a less-parsimonious scenario involves
an unsegmented, indeterminately growing bilaterian ancestor, with parallel evolution of
either determinate growth alone, or following sequential segmentation in several lin-
eages.

In our current model we observed two mechanisms to stop posterior growth: one de-
pending on stochastic changes in an oscillating gene, making it very non-robust, the other
depending on the gradual build-up of a slowly decaying gene, yielding lower phenotypic
variability. This latter strategy resembles a hypothetical mechanism proposed by Mein-
hardt for the sequential activation of HOX genes (Meinhardt, 1982, 2015). Considering
the origin of the HOX cluster from tandem duplication of an early HOX gene (Kappen
et al., 1989), it can be envisioned that an early gene involved in regulating growth, be-
came transformed through duplication into a sequentially activated HOX cluster in which
gene order (i.e. posterior most HOX gene active) rather than level of a single gene now
can act as a robust growth termination criterion. An interesting subject for future stud-
ies would thus be to investigate whether under combined selection for both segmenta-
tion and HOX-like specialisation domains, a HOX-type control of growth evolves. Such
evolutionary outcomes may provide important answers in the puzzle of how the complex
hierarchical network of Drosophila evolved from a sequentially segmenting predecessor;
given the relatedness of gap and HOX genes and the suggested ancestral role for gap
genes in growth control.
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Conclusions In summary, we proposed an order of evolutionary events and selection
pressures involved in generating posterior growth, sequential segmentation, and determ-
inate growth. First, we provided evidence that the prior evolution of a stable posterior
signalling centre has played a decisive role in evolving terminal addition and sequential
segmentation. Then, we showed that the evolution of sequential segmentation combined
with determinate growth can only take place by adding the selection pressure for de-
terminate growth secondarily. Our study demonstrates that varying the onset of selection
pressures can be a powerful tool in investigating the likely order of evolutionary events.
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Table 4.2. parameter values

parameter values remarks
general

grid size 30x30
evolutionary time steps 50000
death rate 0.5
initial # agents 50
Development

developmental time steps 240 the number of integration steps
integration step size 1. fourth-order Runge Kutta

integration
Morphogen decay rate 0.2 Only for persistent posterior

morphogen
initial tissue size 10 cells of which 9 form the head
Gene and protein dynamics

gene product decay rate 0.05 - 0.9
Hill constant of the TFBS 10. - 400.
gene transcription 10. - 100.
Mutational dynamics

Nr of gene types 16
gene duplication 0.006 Note that with the gene, also its

TFBS are duplicated.
gene deletion 0.009
TFBS weight change 0.001
TFBS type change 0.001
TFBS duplication 0.0015
TFBS deletion 0.004
TFBS innovation 0.001 spontaneous emergence of new

TFBS
Fitness

G: penalty per gene 0.0001
T: penalty per TFBS 0.00001
bonus for final tissue size 0 or 0.1 per cell added by division
target size 110 cells
penalty for exceeding target size 1. for each cell more than target size
control period 20 steps Period over which gene expression

stability and sometimes number of
late-stage divisions is measured.

U: expression variance penalty 0.1 Penalty per cell that has a variance
in segmentation gene level > 5.0
during the control period.
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Figure S4.1. Cell-cell signalling allows for robust development in absence of posterior

morphogen (but not always) (transient signal, CCS) A) This individual evolved to be very
robust. It usually makes 8 segments and only in rare cases 7 good segments and one short
segment. B) This individual did not evolve to become very robust despite the presence of
cell-cell signalling genes. Nevertheless, it is usually able to make many more segments than
the individuals evolved without cell-cell signalling. The histograms represent the variation
in phenotypic outcome when an individual’s development is repeated 50 times. In the histo-
grams, the dark bars represent the good segments, and the lighter bars the too-short segments.
See Methods for further explanation.
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Figure S4.2. Very rare evolution of posterior growth in absence of persistent posterior

signal (CCS, no noise) A) This individual first creates a small pool of 5 cells in an initial
burst, which subsequently become completely inert (the black cells in the left space-time
plot). The sixth cell, which is still in contact with the head, gets induced via CCS (gene 1,
circled in yellow in the network) to initiate another burst of divisions, and these cells form
the first two segments (high -> green; and low -> blue) next to the head (see cartoon). When
these new segments mature, there is a short time window in which the most anterior of the 5
posterior inert cells gets induced to initiate a new burst. (...)
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Figure S4.2. (...) Thus, the posterior pool gets depleted by one cell with each burst, putting a
stop to the growth process. (Note the shortening of the dark, non dividing region in the space-
time plots) In the network, the division gene is circled in magenta, and the segmentation gene
in blue. B) This mechanism arises very late in evolution, from a simultaneously segmenting
individual.
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Figure S4.3. Simultaneous segmentation with persistent posterior morphogen can be

more robust than with transient signal (no CCS) A comparison between transient and
persistent posterior morphogen on the evolved simultaneous mechanisms. Those evolved
with persistent signalling are capable of making more segments, and are sometimes very
robust. When they are not robust, they still manage to make more segments on average. Note
that the second individual with transient signalling may be robust, but this means it usually
makes just two segments.
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Figure S4.4. Two examples of non-robust development with sequential segmentation

(persistent signal,no CCS) Top row, developmental space-time plots; second row, histogram
of the outcome of 50 repeated developments; third row, evolved gene interaction networks
and examples of variation in segmentation gene expression; fourth row, gene expression in
the posterior cell with normal divisions; bottom row, gene expression in the posterior cell
with averaged division gene expression instead of divisions. (...)
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Figure S4.4. (...) A) The gene expression oscillations of this individual are entirely dependent
on the regular divisions (oscillations are absent when the division gene is averaged), and are
therefore very sensitive to division noise. B) While the oscillations in this individual do not
depend on the divisions themselves, they are influenced by the level of the division gene.
Stochastic changes in the timing of division result in changes in the level of the division
protein (see circled point in the graph) which may alter the fate of the daughter cell emanating
from the growth zone.
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Abstract

Convergent extension, the simultaneous extension and narrowing of tissues, is a crucial
event in the formation of the main body axis during embryonic development. It involves
processes on multiple scales: the sub-cellular, cellular and tissue level, which interact
via explicit or intrinsic feedback mechanisms. Computational modelling studies play an
important role in unravelling the multiscale feedbacks underlying convergent extension.
Convergent extension usually operates in tissue which has been patterned or is currently
being patterned into distinct domains of gene expression. How such tissue patterns are
maintained during the large scale tissue movements of convergent extension has thus
far not been investigated. Intriguingly, experimental data indicate that in certain cases
these tissue patterns may drive convergent extension rather than requiring safeguarding
against convergent extension. Here we use a 2D Cellular Potts Model (CPM) of a tis-
sue prepatterned into segments, to show that convergent extension tends to disrupt this
pre-existing segmental pattern. However, when cells preferentially adhere to cells of
the same segment type, segment integrity is maintained without any reduction in tissue
extension. Strikingly, we demonstrate that this segment-specific adhesion is by itself suf-
ficient to drive convergent extension. Convergent extension is enhanced when we endow
our in silico cells with persistence of motion, which in vivo would naturally follow from
cytoskeletal dynamics. Finally, we extend our model to confirm the generality of our
results. We demonstrate a similar effect of differential adhesion on convergent extension
in tissues that can only extend in a single direction (as often occurs due to the inertia of
the head region of the embryo), and in tissues prepatterned into a sequence of domains
resulting in two opposing adhesive gradients, rather than alternating segments.
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5.1 Introduction

5.1 Introduction

Convergent extension refers to the simultaneous narrowing and extension of tissues
due to extensive cell rearrangements, and is a key morphogenetic event during formation
of the bilaterian body plan. In bilaterian animals, convergent extension first occurs when
the main body axis forms and extends, pushing the head and tail further away from each
other. Although this axis extension is universal in bilaterians, the cell and tissue beha-
viour causing it differs widely between species (for reviews see (Keller et al., 2000, Tada
and Heisenberg, 2012, Wallingford et al., 2002, Yin et al., 2009)). In Xenopus for ex-
ample, dorsal mesodermal cells polarise and change their adhesive properties (reviewed
by (Skoglund and Keller, 2010)); cells then crawl between each other in a zipper-like
process called intercalation (Keller et al., 2000, Wallingford et al., 2002). In contrast,
convergent extension of zebrafish mesoderm consists of two processes: directed migra-
tion to the dorsal axis and intercalation (Sepich et al., 2005, Wallingford et al., 2002,
Yin et al., 2009). Finally, Drosophila germband extension occurs in a tightly connected
epithelium, where cells intercalate by contracting those parts of the membrane that have
a dorsal-ventral orientation (Bertet et al., 2004, Rauzi et al., 2008, 2010).

Convergent extension is an inherently multiscale process, in which subcellular con-
tractility and adhesion, cell level polarity and migration, and tissue level deformations
are involved. Models incorporating this multiscale nature are of key importance to study
the feedback interactions that give rise to tissue extension. Thus far, models are largely
conceptual in nature, testing whether an experimentally observed (sub)cellular process
or hypothetical mechanism can indeed drive convergent extension (Backes et al., 2009,
Brodland and Veldhuis, 2012, Honda et al., 2008, Weliky et al., 1991).

Among the identified mechanisms capable of driving convergent extension confirmed
by these models are lamellipodia formation (Brodland and Veldhuis, 2012, Brodland,
2006), directed mitosis (Brodland and Veldhuis, 2012), oriented membrane contraction
(Honda et al., 2008, Rauzi et al., 2008), cell extension or protrusions (Backes et al., 2009,
Honda et al., 2008, Weliky et al., 1991) and anisotropic differential adhesion (Zajac et al.,
2003).These different mechanisms also differ in the origin of the directional signal, the
cue which informs cells into which direction to move. In the models including either dir-
ected mitosis, lamellipodia or oriented membrane contractions (Brodland and Veldhuis,
2012, Brodland, 2006, Honda et al., 2008), this direction is explicitly imposed in the
model by telling cells in which direction to extend. In contrast, in the models with aniso-
tropic differential adhesion and cell elongation (Backes et al., 2009, Zajac et al., 2003),
there is no global information: cells have internal polarity and through cell-cell interac-
tions the cells align. Other models are somewhere in between; Rauzi et al. (Rauzi et al.,
2008) use experimental data on the polar distribution of actomyosin, resulting in a co-
ordinated contraction of only dorso-ventrally oriented membranes. The model by Weliky
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Chapter 5. Convergent extension and segmentation

et al. (Weliky et al., 1991) does not impose the direction in which cells extend, but in-
cludes two boundaries enclosing the tissue which inhibit cell extensions, thus providing
an overall bias.

Regardless of how cell/tissue polarity is incorporated in these models, convergent ex-
tension has so far always been studied in homogeneous tissues consisting of cells with
identical fates. However, axis extension usually does not occur in homogeneous tissues,
but rather in tissues that have been or progressively become patterned into regions of
different cell fate. In Tribolium for instance, segments are formed by an oscillating gene
clock, shortly after which the newly segmented part of the tissue starts to narrow and ex-
tend (Benton et al., 2013, Choe et al., 2006, El-Sherif et al., 2012, Sarrazin et al., 2012).
Therefore, an interesting question is how patterns are maintained under convergent ex-
tension, which leads to extensive cell rearrangements and therefore potentially mixes up
cells of different fate. Considering this, it is striking that in Xenopus, the antero-posterior
patterning of the mesoderm is crucial for convergent extension (Ninomiya et al., 2004);
also in Drosophila, a segmented body pattern is essential for germband extension (Irvine
and Wieschaus, 1994, Zallen and Wieschaus, 2004). This leads to the intriguing sugges-
tion that rather than segments becoming lost due to convergent extension, these segments
may actively drive convergent extension.

Since the interplay between tissue patterns and convergent extension has so far re-
ceived little attention, we use a computational model to investigate how a segmented
tissue pattern can be maintained during convergent extension, and whether and how such
a pattern may itself drive convergent extension. We use the Cellular Potts model (CPM)
formalism (Glazier and Graner, 1993, Graner and Glazier, 1992), which has been suc-
cessfully used to model different mechanisms of convergent extension in a homogeneous
tissue (Backes et al., 2009, Zajac et al., 2003), as well as several other morphogenetic
processes like somitogenesis (Hester et al., 2011), ommatidia formation in Drosophila

(Käfer et al., 2007), and Dictyostelium culmination into a fruiting body (Marée and Ho-
geweg, 2001). CPM is particularly suitable for performing the type of multiscale simula-
tions necessary to investigate convergent extension since it endows cells with an explicit
size and shape, allowing for both subcellular resolution and deformation, as well as cell
level properties such as adhesion and migration (Marée et al., 2007).

In this work, we show that convergent extension by itself tends to disrupt a segmented
gene expression pattern that was previously formed. We demonstrate that this disruption
may be counteracted by letting cells adhere preferentially to cells of the same segment
type. Furthermore, we find that such segment-specific adhesion by itself can both provide
the directional signal and serve as a driving force for convergent extension. When we
add a simple form of directional persistence (representing inertia in the cell’s direction of
movement due to the delay caused by cytoskeleton-recycling dynamics) this substantially
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increases the efficacy of convergent extension through segment-specific adhesion. The
latter is especially true in larger and stiffer tissues, where segment-specific adhesion alone
is insufficient to cause a significant tissue shape change.

5.2 Results

5.2.1 The model

For all of our simulations we used a 2D CPM model with two different cell types
(red and green) which represent segments with different identities. These in silico cell
types can either have no segment-specific adhesion -a green cell will then adhere equally
strongly to a red cell as to a green cell- or have segment-specific adhesion, meaning that
cells prefer to stick to cells of the same type. In both cases, cells adhere more to other
cells than to the surrounding medium, such that the tissue does not fall apart into separate
cells or tissue types. The medium itself has no other properties than its adhesion with
cells.

In CPM, adhesion is regulated by J values, which represent the surface energy (per
amount of contact surface) between cells of the same type, between cells of a different
type, or a cell and medium. The CPM tries to minimise the total energy of the system, so
contacts with lower J values are preferred. The strength of adhesion or repulsion between
cells depends on the difference between J values, which can be conveniently represented
by the surface tension (γ) (Glazier and Graner, 1993). The γ values are calculated from
the J values as follows: γi,j = Ji,j−

Ji,i+Jj,j

2 , where i and j represent different cell types
(m=medium, r=red, g=green). Note that Jm,m = 0. We will refer to γ values throughout
this paper, J values are mentioned in the figure legends. A positive γi,j value means that
cells prefer to adhere to cells of the same type, whereas negative values indicate that cells
of different types prefer to mix. We will only use positive or 0 values for γ.

For a subset of simulations, we added a so-called persistence mechanism to our model.
Persistence is the tendency of cells to maintain their previous direction of movement
(memory or inertia), due to the non-instantaneous turnover of the cytoskeleton (Ridley
et al., 2003). When persistence is strong, cells are able to migrate rapidly in a con-
sistent direction, as observed for example in lymphocytes and in gastrulating cells in
zebrafish. We implemented persistence by giving cells a favoured (target) direction of
movement. Despite this bias, the cell is not always able to move exactly in this direc-
tion due to hindrance by other cells or simply random fluctuations. Therefore, this target
direction was regularly (after a fixed number of simulation steps) updated with the cell’s
actual direction of displacement, representing the eventual remodelling of the cytoskel-
eton (Fig. 5.1C)(Beltman et al., 2007). A cell moving this way performs a persistent
random walk.
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Figure 5.1. Model setup. (A) Graded adhesion. In the centre of the field, adhesion between
cells is higher than at the boundaries. This difference is smoothly graded according to a
Gaussian distribution. (B) Axial adhesion. The parts of the membrane that are coloured
red (and indicated by the vertical axis) adhere more to neighbours than the sides, which are
coloured green (and indicated by the horizontal axis). The strength of adhesion is graded
smoothly across the membrane, and the orientation of the axes is fixed and identical for all
cells. (C) Persistence mechanism. The cell has a higher propensity to move approximately
in its target direction (red vector) than the opposite direction. Every s Monte Carlo Steps
(MCS), this vector is updated according to the actual displacement of the cell (black vector;
new vector: blue). (D) Initial state of the tissue. Cells are placed closely together, so that
they form a coherent tissue at the start of the simulation. The tissue is already subdivided into
regular segments of identical widths and cell numbers.

Initially, we also tested two explicit mechanisms for convergent extension, which both
used global information to direct the cells. The first mechanism, called graded adhesion,
was based on the observation that mesoderm cells in zebrafish follow a gradient in cad-
herin activity towards the central axis ((von der Hardt et al., 2007), reviewed in (Tada
and Heisenberg, 2012)). In our model, we implemented this by imposing a static gradi-
ent of cell adhesion, where the location of the cell in the field determined how strongly
it adhered to neighbouring cells; cell contacts that were closer to the centre of the x-
axis adhered more strongly than those that were farther away (Fig. 5.1A). The second
mechanism, called axial adhesion, was an adapted version of the mechanism presented
by Zajac et al. (Zajac et al., 2003). This mechanism was based on the observation that
intercalating cells in Xenopus are polarised and elongated, and the conjecture that these
cells may also have a polarised distribution of adhesive molecules along their membrane.
Figure 5.1B shows the basic idea: the upper and lower sides of a cell (defined by the
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y-axis of the field) have a higher density of adhesion molecules than the left and right
sides. A cell’s adhesion to a neighbouring cell is then a product of the local density of
adhesion proteins on both cells, which is approximated by adjusting the J value (we don’t
explicitly model adhesion proteins). We chose the axes for adhesive density such that the
tissue should extend perpendicularly to the segments.
Later on, these two mechanisms were no longer applied.

For a detailed description of the implementation of all mechanisms, we refer to the Meth-
ods section.

We initiated the in silico tissues with a regular, segmented pattern of red and green
cells (Fig. 5.1D). For convenience, we use the terms anterior-posterior (A-P) axis and
medio-lateral (m-l) axis when we talk about the major and minor body axes of the tissue
(which may have any orientation in the field). When we refer to the axes of the field
(which are fixed), we simply use x-axis and y-axis. In most simulations however, the
y-axis and A-P axis had the same orientation, meaning that the tissue extended in the
direction of the y-axis of the field.

5.2.2 Segment-specific adhesion required to maintain segments dur-

ing convergent extension

To study the effect of convergent extension on a pre-segmented tissue pattern, we
started with the incorporation of either of the two explicit global mechanisms (graded
adhesion or axial adhesion) without including segment-specific adhesion or persistence.
We observed for both convergent extension mechanisms that the tissues extended and
narrowed, but that cells at the boundaries invaded other segments, with some losing all
contact with their designated segment (graded adhesion, Fig. 5.2A, S1 Video; axial adhe-
sion, Fig. 5.2D, S2 Video). Note that the strength of both mechanisms was relatively low
in these tissues, and that the loss of segment integrity became more pronounced when the
strength of the mechanisms was increased (S1 Figure).

Next, we added a small positive surface tension between the red and green celltype
(γr,g = 4, γc,m = 4), causing preferential adhesion to same-segment-type cells. This suf-
ficed to prevent cells from leaving their segment during convergent extension (Fig. 5.2B
and E; S3, S4 Videos). Moreover, the boundaries of the segments were much straighter.
To determine whether this differential adhesion caused any additional differences, we
tracked the total direction of movement of each cell over the whole course of a simulation
(Fig. 5.2, vector plots). In all cases we see the typical pattern of convergent extension:
vectors directed inwards on the lateral sides, and outwards at the anterior and posterior
ends. Despite the preservation of segments when segment-specific adhesion was present,
there was very little difference in the appearance of the vectors. We colour-coded the
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Figure 5.2. Maintenance of a segmented pattern during convergent extension requires

segment-specific adhesion. Left images display tissue at the final step of the simulation
(at 500,000 MCS). Right images contain the displacement vector of each cell in the simula-
tion. The tail of a vector is located at the start position of the corresponding cell, the head
at the end. The colour denotes the average angle of the vector with its neighbouring vectors.
(A,B,C: row 1) Simulations with graded adhesion, strength w = 11. (D,E,F: row 2) Simula-
tions with axial adhesion, strength β = 2. (G,H,I: row 3) Simulations without a predefined
convergent extension mechanism. (A,D,G: col 1) Simulations without segment-specific ad-
hesion, Jc,m = 10, Jc,c = 16. (B,E,H: col 2) simulations with segment-specific adhesion
(Jc,m = 10, Jr,g = 16, Jr,r = 12 γr,g = 4) (C,F,i: col 3) Length of the long axis of the tis-
sue as a function of simulation steps (MCS). Blue is without and red is with segment-specific
adhesion. The curves are averaged over 5 runs of the model, shading indicates standard
deviation.

138



5.2 Results

displacement vectors according to the average angle with their neighbours (Fig. 5.2A, B,
D, E). It seems that in the presence of differential adhesion cell migratory dynamics are
slightly more coherent.

The vector plots in the cases with segment-specific adhesion (Fig. 5.2B, E) suggest
that there was a considerable amount of A-P movement, which was unexpected given
that cells remained restricted to their own segment. We checked whether this restriction
led to a limitation of axis extension (Fig. 5.2C, F). Strikingly, segment-specific adhesion
did not limit axis extension, but in fact enhanced it.

5.2.3 Segment-specific adhesion as a driver of convergent extension

The fact that segment-specific adhesion seemed to enhance axis extension, (Fig. 5.2C,
F) prompted us to investigate the effect of segment-specific adhesion without any ad-
ditional mechanism for convergent extension (Fig. 5.2G-I). Compared to tissue without
segment-specific adhesion (Fig. 5.2G), tissue that had a small amount of segment-specific
adhesion (the minimum amount needed to maintain segments in the presence of an expli-
cit convergent extension mechanism), elongated significantly (Fig. 5.2H). Furthermore,
convergent extension occurred without the cells or tissue having an explicit notion of
their A-P axis (as opposed to the simulations in Fig. 5.2A-F, where the direction was
imposed). This directionality now arose automatically, from the orientation of the in-
terface between segments. The vector plot of the tissue with segment-specific adhesion
(Fig. 5.2H) resembled the pattern generated by the graded and axial adhesion mechan-
isms, albeit with less extensive movement. This pattern was absent in the tissue without
segment-specific adhesion (Fig. 5.2G). These results showed that segment-specific ad-
hesion may not only be able to maintain segments, but could also be a driving force of
convergent extension on its own.

To further investigate this possibility, we varied the surface tension between red and
green segments (difference in adhesion between like and unlike cells, γr,g), and the ten-
sion of cells with the medium (γc,m). With increasing intersegment tension, having con-
tact surface between segments becomes less energetically favourable, creating the tend-
ency to reduce the segment interface. This caused the segments to round up more and
so become narrower and thicker, so also the entire tissue extended and narrowed more
strongly for increasing (γr,g) (Fig. 5.3A). Moreover, the more the tissues extended, the
more the vector plots in Fig. 5.3A resembled the typical pattern of convergent extension.

Tissue extension is counteracted by increasing the tension with the medium, because
extension and narrowing leads to a larger contact surface with the medium, which be-
comes less favourable with larger γc,m. Put differently: if cells prefer not to be in contact
with the medium, the tissue as a whole will remain more rounded (minimal surface with
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Figure 5.3. Segment-specific adhesion leads to convergent extension for a wide range

of parameters. (A) Parameter space of a tissue of four segments with varying values for
γc,m and γr,g (J values can be found in Supplementary Table 1). Initial segment width:
3, length: 10. For each set of parameters, 10 simulations were run over 1,000,000 MCS,
representative final states are displayed. Only for the bottom two parameter sets we observed
merging of segments, in resp. 9 and 8 out of 10 simulations. The dashed box shows a tissue
initiated with 8 segments but with otherwise equal parameter settings to (10,6), to show the
relative independence of simulation outcome from the number of segments. Vector plots were
corrected for whole-tissue rotation. (B) For the same simulations, the length of the long axis
of the tissue as a function of simulation steps (shading indicates standard deviation). The
two parameter sets for which segments merged were not included, nor the simulation with 8
segments.

140



5.2 Results

the medium) and therefore extend less. The final amount of extension therefore depended
on the balance between the two opposing tensions. For the case in the parameter space
with the most extreme extension (γr,g=10, γc,m=6), the tissue extended to about 1.5× its
original length (Fig. 5.3B, S5 Video). When we included more and thinner segments, the
tissue extended even further (to more than 2× the original length); otherwise, the results
were qualitatively similar (box in Fig. 5.3, S2 Figure).

Occasionally, we observed that two segments of the same celltype contacted each other
and merged, thus reducing the number of segments (Fig. 5.3A, bottom right; S2 Figure,
bottom row; S6 Video). This biologically unrealistic behaviour only occurred for very
strong differential adhesion, while biologically relevant behaviour prevailed in the re-
maining, considerably larger part of the parameter space that we explored.

5.2.4 Convergent extension by segment-specific adhesion enhanced

with a persistence mechanism

So far, the in silico tissues with segment-specific adhesion reached their final length
within about the same time scale as the explicit mechanisms. So far however, we used
relatively small and loosely connected tissue. Therefore, we decided to investigate the
efficacy of segment-specific adhesion in both larger and stiffer tissues.

In larger tissues, cells would need to travel greater distances to achieve the same degree
of extension; this could potentially mean that the same process takes much longer in a
larger tissue. It has indeed been suggested that if surface tension alone had to drive large
changes in tissue shape, the process would take unrealistically long (Grima and Schnell,
2007). In Fig. 5.4A we compare two in silico tissues with the same surface tensions
and the same ratio between the length and width of a segment, but one consisted of four
times more cells (the number of cells in both the length and width of the segments was
doubled). Because of the difference in total size, we used the ratio of the long axis over
the short axis of the tissue to compare the extent of axis extension. It can be derived from
first principles that for tissues with the same surface tensions and the same axis ratios at
the start, the final axis ratio should be the same as well (S1 Text). As expected, the larger
tissue extended at a much slower pace than the small tissue and did not reach the same
axis ratio within the span of the simulation.

In the model we used so far, cells retained no memory of the direction in which they
previously moved, and could change their direction of movement instantaneously. How-
ever, biological cells are to some extent persistent: due to polarisation and turnover dy-
namics of the cytoskeleton they tend move for some time in a straight line before chan-
ging direction (Ridley et al., 2003). We hypothesised that endowing our in silico cells
with some persistence in their movement might enhance the effectiveness of the cell
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Figure 5.4. Convergent extension through segment-specific adhesion is enhanced by a

persistent migration mechanism. (A) The ratio of the length of the long and short axis over
simulation steps (MCS) without a persistence mechanism for a small and a large tissue (4x
more cells). The large tissue (red curve) never reaches the same ratio as the small tissue.
Next to the graph are examples of the state of both small and large tissue at the beginning
and end of the simulation. Note that the cells in the small tissue actually are of the same size
as those in the large tissue, but that the images are resized. J values: Jc,m = 12, Jr,g = 22,
Jr,r = 16, γr,g = 6 (B,C) The long/short-axis ratio for the small tissue (B) or large tissue (C)
with different cell speeds (indicated in the legends) resulting from different strengths of the
persistence mechanism. Curves are averaged over 5 simulations, shading indicates standard
deviation. Note that the speeds are emergent quantities measured from simulation output,
and have dimension (lattice sites)/MCS (where the lattice sites have arbitrary length). Next
to the graph are examples of the state at the end of the simulation (also with vector plots of
cell displacement). The colour of the box indicates the parameter set the example belongs to.
Vector plots were corrected for whole-tissue rotation, and in the plots for the large tissues,
60% of vectors were sampled for greater clarity. (B) Blue curve: µ = 0.5, s = 5; purple
curve: µ = 2.0, s = 5; yellow curve: µ = 2.0, s = 10. (C) Blue curve: µ = 0.5, s = 5;
purple curve: µ = 1.0, s = 10; yellow curve: µ = 1.5, s = 30. (D) The ratio of the length of
the long and short axis for simulations with stiffer tissue, compared to the previous settings
(large tissue). J values for stiffer tissue: Jc,m = 24, Jr,g = 44, Jr,r = 32, γr,g = 12.
(E) Improvement of extension of the stiff tissue in the presence of persistence. Blue curve:
µ = 0.5, s = 5; purple curve: µ = 2.0, s = 40; yellow curve: µ = 2.5, s = 40. (F)
Example of T1 transition in a tissue with intermediate strength persistence. µ = 2.5, s = 20,
speed 0.150, final axis extension 1.6x

142



5.2 Results

motion resulting from segment-specific adhesion. Therefore, we implemented a simple
persistence mechanism which has been used before in CPM for migrating lymphocytes
(Beltman et al., 2007) (see section “the model” and Methods for details). Note that we
did not impose a tissue-level bias on the direction of persistence beforehand to favour
convergent extension: the cells started each with their own random target direction.

Endowing cells with a limited tendency for persistence slightly increased the speed of
cell displacement, yielding more rapid convergent extension and a more elongated tissue
shape at the end of the simulation (Fig. 5.4B, C). In the large tissue, further increasing
the level of persistence allowed the tissue to reach almost the same axis ratio as the small
tissue without persistence in a comparable amount of simulation steps (Fig. 5.4C). The
smaller tissue also gained extension speed and a larger axis ratio from increased cell
speeds; however, because the tissue already extended quite rapidly, the contribution of
persistence was substantially smaller (Fig. 5.4B). From the vector plots it can be seen
that the overall cell displacement pattern still generated the typical convergent extension
pattern.

Note that without differential adhesion between segments (S3 Figure), persistent cell
motion only mixed up the segmentation pattern without yielding any tissue extension.
This indicates that segment-specific adhesion provided the directional signal for axis ex-
tension; aligning the initially random direction of persistent cell motion and thus allowing
it to enhance tissue extension.

When the strength of the persistence mechanism was strongly increased, the probab-
ility of segments merging suddenly increased (Fig. 5.4B, yellow curve). Interestingly,
the large tissue seemed capable of sustaining larger cell speeds before segment collapse
occurred. In both cases this extreme behaviour only occurred for rather strong persist-
ence, while in a large part of the parameter space convergent extension was significantly
enhanced without the risk of tissue collapse (see also S4 Figure).

Next, we tested the efficacy of segment-specific adhesion in stiffer, more epithelium-
like tissues. For this, we doubled the J values, which reduces the amount of membrane
fluctuations; as can be seen in Fig. 5.4D and F, the cells move considerably less and have
a more distinct hexagonal shape than in the more flexible mesenchyme-like tissue we
studied earlier. In these stiff tissues, segment-specific adhesion alone generates hardly
any tissue extension, because the higher J values present an energy barrier to tissue shape
change, much like tight junctions (Fig. 5.4D). However, combined with increasing levels
of persistence, beyond the range of parameters used before, significant tissue extension
arose (Fig. 5.4E). Thus, in a stiff, tightly connected tissue an active cell motility pro-
cess is required to drive convergent extension, while differential adhesion still provides
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the directional signal. Interestingly, for intermediate persistence levels cells maintain the
hexagonal shape typical of stiffer epithelial tissues and T1 transitions can be frequently
observed throughout the extension process (Fig. 5.4F). In contrast, for the highest per-
sistence levels tested, cells display considerable more membrane fluctuations, causing
them to lose the hexagonal shape imposed by the higher tissue tension. Therefore, under
these settings the tissue can no longer be considered as epithelium-like.

5.2.5 Extensions to the model

The above simulations were all done with an unconstrained, fully segmented tissue. To
further examine the relevance of differential adhesion as a driver of convergent extension
in real-life morphogenesis, we modified our simulations in two ways corresponding to
observed in vivo conditions: with a constrained anterior end and with a gradual instead
of discretely segmented differential adhesion pattern (Fig. 5.5).

Figure 5.5. Extension to the model: a blocked anterior end does not alter results. (A,B)
Simulations with graded adhesion, without (A) or with (B) segment-specific adhesion. The
black bar represents the top boundary of the field (not an actual simulated object). 5 sim-
ulations were run over 500,000 MCS with parameters as in Fig. 5.2, representative final
states are displayed. (C) Two simulations with only segment-specific adhesion, (Jc,m = 10,
Jr,g = 18, Jr,r = 8 γc,m = 6 and γr,g = 10, run for 1,000,000 MCS as in Fig. 5.3. Note
how the tissue pushed away from the boundary in the right figure; the vector field here is not
corrected for tissue rotation.

In many cases, the tissue undergoing convergent extension is attached on one or more
sides to adjacent tissue, and is therefore restricted in its movements in that direction.
For instance, in Tribolium the converging tissue is attached to the head, which moves
very little and does not change shape. We tested the influence of such a restriction on
convergent extension and cell mixing by placing the anterior end of the tissue against
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the border of the field, to constrain tissue movement at the anterior tissue boundary. We
then applied the explicit graded adhesion mechanism (as in Fig. 5.2), and observed that
cell mixing still occurred in the absence of segment-specific adhesion (Fig. 5.5A). Note
that the anterior end of the tissue converged less because the tissue could not extend in
the anterior direction, which becomes obvious in the vector plot of Fig. 5.5A where all
arrows point either inward or to the posterior. This caused the tissue to become a bit
‘carrot-shaped’,which is indeed typical for extending tissues attached to non-extending
tissues (see e.g., Tribolium). Again, segment-specific adhesion prevented mixing at the
segment boundaries (Fig. 5.5B), and was by itself able to drive convergent extension
(Fig. 5.5C) for larger surface tensions. Note that for strong segment-specific adhesion,
the tissue tended to rotate and push away from the boundary to escape the restriction
(see also vector plot), allowing it to elongate more in the same amount of simulation
steps. This is an artefact of the way we modelled the restriction as only an impenetrable
boundary into which no extension can occur; had the extending tissue also been attached
to this boundary it would likely rotate less.

Convergent extension also occurs in non-segmented tissues. In Xenopus it was shown
that when cells from the axial mesoderm were mixed, they quickly sorted out according
to their original position on the antero-posterior axis, implicating that a position-based
differentiation gradient rather than discrete segments yielded differential adhesion (Ni-
nomiya et al., 2004). Strikingly, the amount of convergent extension occurring depended
on the degree of sorting out that had already occurred. This suggested that differential
adhesion, besides getting and keeping cells at the right position, also played an instruc-
tional role in convergent extension. Furthermore, it was found that the differential ad-
hesion mechanism acted both upstream of and in parallel to the PCP pathway to drive
convergent extension (Ninomiya et al., 2004).

Here, we tested whether a gradient in adhesion proteins could cause correct anterior-
posterior sorting and whether it could bring about convergent extension in a similar man-
ner to the in silico segmented tissue. A tissue with graded expression of a single protein
would not display anterior-posterior, but radial cell sorting without any convergent exten-
sion, according to both experiments and computational models (Ninomiya et al., 2012,
Zhang et al., 2011). We therefore generated a tissue with two adhesion proteins that
formed opposite gradients. This meant that a cell with a high concentration of protein A
had a low concentration of protein B and vice versa (S5 Figure, see Methods for details).
Cells with high A adhere more strongly to other cells with high A (and vice versa). Fur-
thermore, cells with intermediate concentrations of both proteins adhere more strongly
to each other than to cells with a high concentration of just one protein (S5 Figure, ex-
planation in Methods).
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When cells were placed randomly in the tissue (as in the experiment with mixed tis-
sue), they sorted out with cells with similar protein concentrations clustering together.
However, tissues in which cells had no persistence sorted out only partially: they be-
came stuck in local optima where multiple clusters of similar protein concentrations
were present, which was also observed for large tissues with a single protein gradient
(Zhang et al., 2011) (S5 Figure). The partially sorted state was reached more quickly
when the gradients of A and B concentrations were steeper, although this still did not
lead to complete sorting. The tissue did sort completely when cells were endowed with
high persistence, creating a rather turbulent tissue which could sort quite rapidly, with
high-A cells on one end and high-B cells on the other (Fig. 5.6A).

Figure 5.6. Extensions to the model: two opposing adhesion gradients lead to a-p sorting

and convergent extension. (A) Random initial configuration, then run over 2,000,000 MCS.
Maximum difference in adhesion strength between like and unlike cells, mm=18. Jc,m =
15, maximum Ji,j = 28. Persistence mechanism at high strength,µ = 2.0, s = 30. (B)
Simulation with two opposing gradients of adhesion proteins, sorted initial configuration
(2,000,000 MCS). Persistence mechanism at low strength,µ = 0.5, s = 5.

When the simulation started with a tissue in which cells were already sorted, it elong-
ated, with the extent of elongation depending on the maximum difference in adhesion
(Fig. 5.6B, S6 Figure). Modest persistence could enhance this process (S6 Figure), but
strong persistence reduced the extension again (see the fully sorted, but unelongated tis-
sues in S5 Figure). Therefore, if extension should follow after sorting of a fully mixed
tissue, cell motility needs to be regulated together with the degree of sorting. However,
in naturally occurring situations, AP patterning occurs prior to convergent extension, so
complete mixing and hence the need for complete sorting are unlikely to occur. Rather,
robustness to developmental noise will require limited sorting to optimise AP patterning,
for which lower persistence levels are sufficient.
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Thus, our results show that besides a segmented tissue pattern, graded distributions of
adhesion proteins are also capable of driving a modest form of convergent extension.

5.3 Discussion

Interplay of tissue patterning and convergent extension

During formation of the bilaterian body axis, cells converge and intercalate to form a
tissue that is longer and narrower. Convergent extension usually occurs in tissues which
have undergone prior gene expression patterning such that cells have distinct fates at
different positions in the tissue. Arguably, convergent extension, which often causes ex-
tensive cell rearrangements, should be tightly regulated to prevent it from interfering with
this tissue pattern. An example where this is relevant is Tribolium, in which convergent
extension follows shortly after segmentation (Sarrazin et al., 2012). Paradoxically, it has
been shown in both Drosophila and Xenopus that a segmented or other antero-posterior
tissue pattern is required for convergent extension (Irvine and Wieschaus, 1994, Ninom-
iya et al., 2004, Zallen and Wieschaus, 2004) suggesting that it is instructive for rather
than compromised by tissue remodelling. It is therefore important to know how conver-
gent extension may interact with a prepatterned tissue.

Here, we investigated the potential role of segment-specific adhesion in convergent
extension of a fully segmented tissue. We applied two mechanisms -graded adhesion
and axial adhesion- that caused convergent extension of the tissue. We demonstrated
that without segment-specific adhesion, these mechanisms disturbed the segmented tis-
sue pattern. Adding segment-specific adhesion in our model did not only preserve the
segments, but also enhanced the extension of the long tissue axis. Furthermore, segment-
specific adhesion by itself was sufficient for convergent extension both in unconstrained
and constrained tissue, and can be combined with persistence to enhance extension in
larger and stiffer tissue. Finally, we have shown that this differential-adhesion based
mechanism also extends to non-segmented tissues with opposite gradients of adhesion
proteins, although the amount of extension is more modest.

Source of directionality of convergent extension

An important question concerning convergent extension is where the directional signal
for the orientation of tissue extension comes from. A number of earlier models was con-
structed to elucidate the various mechanisms behind convergent extension through cell
intercalation in different organisms (Backes et al., 2009, Brodland and Veldhuis, 2012,
Honda et al., 2008, Rauzi et al., 2008, Weliky et al., 1991, Zajac et al., 2003). Most of
these predefined a direction of extension either by biasing protrusions or constrictions of
the cell membrane ((Brodland and Veldhuis, 2012, Brodland, 2006, Honda et al., 2008,
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Rauzi et al., 2008)), or including a boundary which restricts cell motion in certain dir-
ections (Weliky et al., 1991). Only two models did not impose such a direction. In the
model by Backes et al.((Backes et al., 2009), a positive tension between two cell types
instructed the intercalation direction of forcibly elongated cells, and led to a direction of
extension and narrowing which was perpendicular to that in our model. This mechanism
only worked for tissues which were already quite narrow, and generated very little actual
tissue extension. In the original version of the axial adhesion mechanism, constructed by
Zajac et al. (anisotropic differential adhesion, (Zajac et al., 2003)), the adhesion polarity
of cells was not fixed, but rather depended on the orientation of the cell long axis (cells
were forced to be elongated). In this case, the direction of tissue extension was not pre-
defined, but emerged through alignment of the elongated cells. As a consequence, the
direction of axis extension was random and differed between simulations. Finally, Shin-
brot et al. (Shinbrot et al., 2009) demonstrated that cell-cell adhesion and repulsion can
generate segmented and elongated tissue patterns from random initial cell configurations.
Rather than through convergent extension, the elongated and segmented patterns in their
simulations form from cells condensing from a dispersed state while sorting into disks,
with the tissue assuming a random orientation with respect to the field axes.

In this paper, we started out with two superimposed mechanisms for convergent ex-
tension, in which the direction of extension was also superimposed. One had an explicit
gradient defining the position of the extending axis (graded adhesion), while the other im-
posed an internal, fixed polarity on the cells (axial adhesion), thus implicitly assuming the
presence of some kind of signalling gradient. Interestingly, when segment-specific adhe-
sion drove convergent extension alone, directionality emerged without such an imposed
signalling gradient or polarity. Instead, the interface between segments provided enough
information to allow the tissue to stretch in the direction perpendicular to it. The ability
of segment-specific adhesion to provide the extension direction was further emphasised
when we combined it with the persistence mechanism, which by itself could not produce
convergent extension, but could speed up tissue extension considerably when combined
with segment-specific adhesion. Therefore, to our knowledge, segment-specific adhe-
sion is the first convergent extension mechanism which yields a predictable direction of
convergent extension without imposing polarity on the cellular or tissue level.

Mechanism of convergent extension by differential adhesion

In our model, the degree of tissue extension by segment-specific adhesion was determ-
ined by the balance between surface tension between red and green segments, and the ten-
sion of the tissue with the surrounding medium. The red-green surface tension provided
the elongating force by reducing the contact surface between the segments (pulling the
segment interface inward), whereas the surface tension with the medium opposed this
force by making the tissue as a whole as round as possible (pulling the segment interface
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outward). This agrees well with findings in Xenopus, where the axial mesoderm needs to
be enveloped in epithelium in order to extend (Ninomiya and Winklbauer, 2008). Without
the epithelial layer, the surface tension of the mesoderm with the environment is too high,
resulting in a spherical tissue.

Because differential adhesion minimises the contact area between tissues of different
types, the initial ratio between segment width and length is another factor influencing the
extent of convergent extension in our simulations. The smaller the initial ratio between
segment width and length, the larger the contraction of the contact between segments,
and the more extreme the resulting tissue elongation will be (compare Fig. 5.3 with ratio
3/10, to S2 Figure with ratio 2/15). As segments are typically organised perpendicular
to the length axis of the tissue, the initial segment width corresponds to the tissue width
before convergent extension, while the initial segment length corresponds to the tissue
length before convergent extension divided by the number of segments. The segment
width length ratios used in our simulations are well within the naturally occurring ranges
when considering the segment numbers and tissue widths and lengths observed in for
example Tribolium, Drosophila and other arthropods.

Limitations

We observed an apparent limit to the extent in which segment-specific adhesion can
drive convergent extension. When differential adhesion tensions or persistence levels ex-
ceeded a certain threshold, the segments started to rotate and merged with other segments
of the same type, thus further minimising intersegment boundary surface. However, we
suggest that this may largely be an artefact of our simplified 2D model; the risk of tissue
bending may be much lower for a 3D tissue, and/or if the tissue is also embedded in
other tissues (as in Xenopus) that restrict its movements and aid convergent extension at
the same time. Furthermore, the phenomenon did not occur for most of the parameter re-
gion we tested, and we obtained strong tissue elongation within the biologically relevant
region. In addition, for persistence it is reasonable to expect that once convergent exten-
sion has completed cell motility is downregulated again as part of the further progression
of the development program (note that persistence is not required for maintenance of tis-
sue extension). This termination of persistence provides an additional safeguard against
segment fusion.

In the current study we have shown that in a coherent, fully presegmented tissue,
segment-specific differential adhesion is a suitable candidate mechanism both for main-
taining segment integrity and driving convergent extension. We did not take into ac-
count other processes that may take place at the same time as convergent extension. For
instance in Tribolium and other short-germ insects, the segments are laid down sequen-
tially instead of simultaneously, from a growth zone where cell division provides a steady
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source of undifferentiated tissue. It appears that in this case, convergent extension oc-
curs shortly after a new segment is laid down (Choe et al., 2006, Sarrazin et al., 2012).
Based on preliminary results, we expect that segment-specific adhesion will also suffice
to drive convergent extension during sequential segmentation, but given the complexity
of the growth zone and segment-definition dynamics, it is beyond the scope of this article
to investigate this.

Furthermore, we assumed for the sake of simplicity that a cell’s adhesion is a fixed
property. However, we recognise that this may not always be the case, for instance when
cells change the concentration of adhesion molecules on their membrane in response to
interactions with other cells that possess different (concentrations of) adhesion molecules
(see (Ninomiya et al., 2012)). This may influence the ability of differential adhesion to
drive convergent extension.

Comparison to experiments

We found that for loosely connected, mesenchyme-like tissues differential adhesion
alone or combined with a limited persistence of motion can drive convergent extension.
As such, we expect differential adhesion to contribute to axial extension in organisms
such as Xenopus in which an antero-posterior pattern is present, and which indeed served
as one of the inspirational starting points for this study. Possibly this mechanism also
plays a role in short-germ insects such as Tribolium, which undergoes convergent exten-
sion simultaneously with segmentation, if the tissue emanating from the growth zone is
indeed flexible enough.

For stiffer tissues we found that in order to obtain substantial tissue extension,
segment-specific adhesion needs to be combined with a significant level of persistent
cell motion. Notably, the persistence alone would not produce any convergent extension,
but requires differential adhesion to instruct and coordinate cell movement. Furthermore,
the strength of persistence required for proper extension was so low that inspection by
eye would most likely not reveal the presence of this mechanism in in vivo tissues, as the
cell displacement is similar to that of tissues where cells are not persistent. Persistence
strong enough to be visible led to turbulence and segment merging, and would require
other, more global directional cues than segment-specific adhesion to yield convergent
extension.

Although clearly not a one-to-one match, persistence bears intriguing similarities to
the case of the Drosophila germband. Here, parasegmental actomyosin barriers prevent
intersegmental cell mixing (Monier et al., 2010, 2011), while the segments also serve as
a directional signal for planar cell polarity, which subsequently instructs the anisotropic-
ally directed actomyosin contractions that drive the T1 transitions underlying convergent
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extension (Bertet et al., 2004, Rauzi et al., 2008, Zallen and Wieschaus, 2004). The sim-
ilarities reside in the fact that the segmental pattern instructs the direction of cell move-
ment, and that cell movement requires active cytoskeletal remodelling. It remains to be
established whether segment-specific adhesion can act in combination with and thereby
enhance the mechanisms observed in Drosophila, or whether it may act as an alternative
strategy deployed in other organisms.

Unfortunately, the similarities between the differential adhesion mechanism and the
Drosophila type mechanism make the design of an experimental setup to discriminate
against these two possibilities highly non-trivial. As an example, if we experiment-
ally disrupt genetic factors regulating segmentation these will not only hamper segment-
specific adhesion, but also the aforementioned planar polarity such as occurs in Droso-

phila. As a consequence results would be inconclusive. Likewise, active cytoskeletal
dynamics are involved both in convergent extension driven by the combination of differ-
ential adhesion and persistence and in planar-polarised junctional tension driven conver-
gent extension. Thus, failure of convergent extension upon actomyosin disturbance will
again be inconclusive. Similarly, although one could try to experimentally increase the
adhesiveness of the whole tissue by ubiquitously expressing e.g. N-cadherin; this would
certainly hinder convergent extension via segment-specific adhesion, but unfortunately
is likely to also hinder other convergent extension mechanisms by increasing the energy
required to break the bonds between cells. This problem of distinguishing between the
two mechanisms is further aggravated by the fact that the mechanisms may be likely to
work in combination. One experiment that may allow for a distinction between the two
convergent extension mechanisms is to apply pulling forces on the tissue in the direction
parallel and perpendicular to the segmentation pattern. If less force is required to tear
the tissue along segment boundaries than to tear it in the perpendicular direction this is
a strong indicator that differential adhesion is involved. Still, this does not allow one to
establish the importance of this differential adhesion for convergent extension.

Conclusion

In summary, we have shown that differential adhesion is sufficient to drive convergent
extension in presegmented tissues, and represents a convergent extension mechanism not
requiring any directional signal. While the investigated convergent extension mechan-
ism may not be universal, in segmented tissues the presence of segmental boundaries
is likely to contribute to convergent extension, either via differential adhesion or via al-
ternative mechanisms such as actomyosin bands or planar cell polarity. Likewise, while
not all tissue is segmented, anterior posterior patterning may also allow for differential
adhesion-based convergent extension. In the current study we focused on the role of a
fully presegmented tissue pattern in driving convergent extension. However, in many
cases segmentation and convergent extension occur simultaneously.
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Therefore, in future work we aim to investigate the dynamic interplay between sequen-
tial segmentation and convergent extension. Considering such bidirectional feedback
between patterning and morphogenesis may bring to light important principles of co-
ordinating growth and patterning.

5.4 Methods

5.4.1 Model setup

CPM model formalism

We consider convergent extension of monolayer tissues, and therefore we use a simple
2D Cellular Potts Model for all our simulations. In the CPM model formalism, cells con-
sist of multiple lattice sites with 2D coordinates i and j and have a cell type τ and identi-
fication number σ. The lattice (“field”) is updated using the Monte Carlo algorithm. For
each Monte Carlo step (MCS), lattice sites are drawn randomly, as many times as there
are lattice cells. For each site belonging to the boundary of a cell, a random neighbour is
selected which may copy its identity into this lattice site. The probability of this event is
calculated with the Hamiltonian, which depends on the change in cell surface energy and
cell volume that would be caused by the potential copy event. The surface energy of lat-
tice sites at the cell boundary, Jτ(σij),τ(σi′j′ )

, depends on the type of the cell (τ(σ(ij)))

and that of the neighbour that the lattice site contacts (τ(σi′j′)). Cells are assumed to
minimise their surface energy while at the same time trying to maintain their volume (or
in 2D, area) at a target value Aσ . The Hamiltonian is then as follows:

H =
∑

ij

∑

i′j′

Jτ(σij),τ(σi′j′ )
(1− δσij,σi′j′

) +
∑

σ

λa(aσ −Aσ)
2

The first term represents the sum of all surface energies J, where δ is the Kronecker delta
(0 if σij and σi′j′ are different, and 1 if they are equal). σi′j′ sums over all 8 neighbouring
sites in the 3 × 3 neighbourhood. The second term serves to keep the actual area a of a
cell close to the target area A, where λa is the resistance of cells against volume changes.
The probability that a neighbouring site extends into the lattice site under consideration
is 1 if ∆H < 0, and e−(∆H)/T otherwise, where ∆H is the change in the Hamiltonian
due to the considered modification, and T is the simulation temperature, determining the
membrane fluctuation amplitude of cells. The model was implemented using the C++
programming language.

J values and adhesion

As mentioned before, the J values represent the surface energies at the interface of cells
and their surroundings. The higher the J value, the less favourable the interaction, and
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therefore a pixel copy which reduces such an interface will be rather likely. Therefore,
mechanisms which increase adhesion reduce the J value of that cell-cell interaction. J
values act in a relative manner. If the J value of a cell-medium interaction is lower than
that of a cell-cell interaction, cells will disperse through the medium rather than form
a coherent tissue. Likewise, if the J value between red and green cells is higher than
both the J value of red-red and green-green interactions, red and green cells will form a
chequerboard pattern (see (Glazier and Graner, 1993) for more details). The behaviour
of cells under a certain set of J values can be more easily seen from the surface tensions,
which are calculated from the J values as follows:

γi,j = Ji,j −
Ji,i + Jj,j

2

where i and j represent different cell types. Now, a positive γ value for the interaction
between red and green cells keeps them separated (while a negative one causes mixing),
and the same is true for the γ value of cell and medium interactions.

Simulation initialisation

Cells are initiated as blocks of 5 × 5 lattice sites, put closely together in a grid-like
manner in the centre of the field. At this point, we already divide the in silico tissue into
regular segments of alternating cell types. In the simulations of Fig. 5.2 and Fig. 5.3,
each segment is 3 cells thick and 10 cells wide upon initialisation. In the simulations for
Fig. 5.4, the segments were each 2 × 10 cells for the small tissues, and 4 × 20 for the
large tissues.

5.4.2 Explicit convergent extension mechanisms

Two alternative mechanisms for convergent extension were used: graded adhesion and
axial adhesion. To implement such a mechanism, ∆H is modified for certain lattice sites
to establish a bias in copy probability.

Graded adhesion

For the graded adhesion mechanism, the J value of two adjacent cells is modified
depending on their location within the field. We defined a Gaussian function with a
maximum at the centre of the field in the x-direction (Fig. 5.1A), but homogeneous in the
y-direction.

J ′ = J − w ∗ e−
(x−b)2

2∗c2

where w is the maximum amplitude of the modification, b is the centre of the x-axis of
the field, and c is the standard deviation of the Gaussian. As a consequence, J values
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become gradually lower towards the centre of the field.

Axial adhesion

For the axial adhesion mechanism, cells have an increased adhesion on the upper and
lower faces of the cell (Fig. 5.1B). This was incorporated using the following modifica-
tion of the J values:

J ′ = J − β2 ∗ |sin(α)| ∗ |sin(α′)|

where β represents the maximum reduction of surface energy because of the mechanism,
and α and α′ are angles with the horizontal (x-) axis. α is the angle of the vector pointing
from the centre of cell σij to the membrane segment where the copy takes place, and α′

is the angle of the vector in the neighbouring cell (σi′j′ ). By taking the sine, we ensure
that the modification of J is highest for membrane segments both at the top and bottom
of the cell (so with vectors along the y-axis), correcting with the absolute value for the
fact that angles larger than π yield negative sines. See Zajac et al. (Zajac et al., 2003) for
the original version.

Persistent motion

Persistent motion is implemented by enhancing the probability of extension in the
direction of previous movement. In practice, this means that cells have a target direction,
and extensions that have a small angle with this direction occur with a higher probability
than extensions with a large angle to the target. The target direction is updated every s

MCS to the direction of the actual previous displacement of the cell. Persistence was
incorporated by extending ∆H as follows:

∆H ′ = ∆H − µ cos(ζ)

where µ is the strength of persistence, and ζ is the angle between the target direction and
the displacement vector under consideration (i.e., the vector given by the mean position
of the cell and the coordinates of the position to be modified). Both larger µ and larger
update times contribute to higher persistence (time during which the cell moves in a more
or less straight line) and larger cell speed. See also Fig. 5.1C and (Beltman et al., 2007).

Opposing adhesion protein gradients

Cells have two adhesion proteins A and B, whose concentrations together add up to
1.0 (arbitrary units). So A = 1.0 − B. For the sorting simulations, cells are assigned
a random concentration of B between 0 and 1. Subsequently, their concentration for A
follows from A = 1.0 − B. In the convergent extension simulations, where the cells
are already sorted, the concentration of B is increased stepwise from 0 to 1 in every
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subsequent row. The protein concentrations are translated to a J value between two cells
i and j as follows:

Ji,j = Ji,j −mm ∗ (min(Ai, Aj) +min(Bi, Bj))

where Ai is the concentration in cell i, min compares the concentrations of cell i and j
and takes the minimum, and mm is the maximum reduction in J value (when cells have
identical protein concentrations). MM therefore determines the ‘steepness’ of the adhe-
sion gradients. The cell with the lowest concentration of a protein dictates the amount
of adhesion between two cells via that protein, so a cell with high A still adheres poorly
to a cell with low A. The two adhesion proteins do work additively: having a bit of both
leads to more adhesion than just having a bit of one; therefore, cells with intermediate
concentration adhere more strongly to each other.

5.4.3 Model analysis

Cell displacement vectors

The mean position of each cell is registered every 1000 MCS. The position at time
5000 (to allow for an initialisation period) and the final time point are used to determine
the overall displacement vector (using Python scripts). The vector plots are corrected for
whole-tissue rotation with respect to the y-axis of the field. For this, the rotation of the
long axis of the tissue with respect to the y-axis is registered throughout the simulation.

Correlation of neighbouring cell displacements

The displacement vectors of figure 2 and supplementary figure 1 have been coloured
according to their average angle with the neighbouring vectors. A neighbour of a vector
has a starting point which lies within a neighbourhood of size 30 (field pixels) around the
starting point of the vector. The colour bar is scaled relative to the largest average angle
in one of the two simulations to be compared (see figure 2). The colour of the vector is
relative to the largest value

Emergent cell displacement speed

The mean positions are also used to calculate cell speeds, which is both an average
over the variable speed of a cell and an average between cells. We used customised Perl
scripts for the calculations.
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5.4.4 Model parameters

The current study serves as a proof of principle, illustrating how convergent exten-
sion may disrupt pre-existing tissue patterns, while these pre-existing tissue patterns may
also drive convergent extension through differential adhesion. Because of the conceptual
nature of our model, we do not aim to quantitatively fit convergent extension dynamics
in a particular model organism. However, if this where to be the case, model parameters
could be adjusted to obtain cell movement speeds and trajectories matching experimental
data. In contrast, in the current study we aim to illustrate that differential adhesion either
alone or combined with persistence of motion, represents a feasible new mechanism for
convergent extension. As such, we aimed to ensure that differential adhesion driven
convergent extension occurs for a wide range of parameters, making it a plausible mech-
anism in broad range of contexts. For persistence, parameter scaling was done internally:
we matched persistence tendencies to membrane fluctuations and overall tissue deform-
ation so that we remained in the domain of biologically realistic behaviour, avoiding the
merging of segments or of turbulent tissue dynamics. As a consequence, we applied con-
siderably lower persistence tendencies than in the study by Beltman et al (Beltman et al.,
2007), where it was used to simulate migrating lymphocyte dynamics. Note the lim-
ited persistence tendencies applied in our studies significantly altered quantitative model
behaviour, as shown in Fig. 5.4. Default parameter values are shown in Table 1.
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Table 5.1. Default parameter values

parameter value comments

common parameters

field size 400x400 - 800x800
(lattice sites)

size varied to accommodate tissue
even when extended

duration 5 ∗ 105 (MCS)
initialisation period 500 (MCS)
simulation temperature
(T)

15

neighbourhood order 2
target cell area 500 or 200 (lattice

sites)
smaller cell size used for all
simulations with persistence (for
computational efficiency)

λa 1.
Jc,m 10-22 ranges used in all simulations
Jr,g 12-18 except in those with stiff tissue
Jr,r 4-18 (Fig. 5.4D-F)
mechanism-specific

parameters

w 11
c 7
β 2.0
µ 0.5-2.0
s 5-30 (MCS)
mm 12-24

Where applicable, parameter dimensions are indicated behind the value between
parentheses.
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Figure S5.1. Strong graded adhesion and axial adhesion lead to more elongation and

more mixing at the segment boundaries. Left images display tissue at the final step of the
simulation (at 500,000 MCS). Right images contain the displacement vectors of each cell in
the simulation. The tail is located at the start position of the cell, the head at the end. (A,B,C:
row 1) Simulations with graded adhesion, strength w = 12. (D,E,F: row 2) Simulations with
axial adhesion, strength β = 2.66. (A,D) Simulations without segment-specific adhesion.
(B,E) Simulations with segment-specific adhesion (γr,g = 4). (C,F) Length of the long axis
of the tissue as a function of simulation steps. Blue is without and red is with segment-specific
adhesion. The curves are averaged over 5 runs of the model, shading indicates standard
deviation. Note that the added effect of segment-specific adhesion on axis extension is smaller
here than when the convergent extension mechanisms are weaker (compare to figure 2 in main
article).
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Figure S5.2. Segment-specific adhesion leads to greater extension with more and nar-

rower segments. Parameter space of a tissue of eight segments with varying values for γc,m
and γr,g , same as figure 2 (See Supplementary Table 1 for J values). Initial segment width:2,
length:15. cells, For each set of parameters, 10 simulations were run over 100,000 MCS,
representative final states are displayed. In the following simulations we observed merging
of segments [(row, col), # out of 10 sims]: (10,10) 1; (10,14) 2;(14,10) 10; (14,14) 10. Vector
plots were corrected for whole-tissue rotation.
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Figure S5.3. Without segment-specific adhesion, persistence does not lead to convergent

extension. On the left: a tissue without segment-specific adhesion, and no persistence mech-
anism. On the right: a tissue without segment-specific adhesion, having a persistence mech-
anism with µ = 2.0, s = 10, leading to an average cell speed of 0.181 (lattice sites/MCS). J
values are Jc,m = 12, Jc,c = 18

Table S5.1. J values of the parameter space of figure 3 and supplementary figure 2.

The order of the values is Jc,m , Jr,g , Jr,r .

γc,m →
γr,g
↓ 2 6 10 14

2 10,18,16 14,18,16 18,18,16 22,18,16

6 12,18,12 16,18,12 20,18,12

10 10,18,8 14,18,8 18,18,8

14 12,18,4 16,18,4
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Figure S5.4. Influence of persistence on cell and tissue dynamics. (A) Influence of persist-
ence on tissue elongation. Results are shown for simulations with varying persistence para-
meters (µ = 0− 2.0, s = 5− 30) with the long/short axis ratio at the end of the simulation
(duration 5x105 MCS) plotted against the measured average cell speed of a single isolated
cell with those parameters(lattice sites/MCS). J values are Jc,m = 12, Jr,g = 22, Jr,r = 16,
γr,g = 6. (B) For a subset of the persistence levels in A, cell tracks from 5 random cells
part of the same extending tissue are shown (1 of the 5 simulated tissues shown in A; para-
meters correspond to the following cell speeds (single, tissue): (0.60,0.117), (0.69,0.137),
(0.80,0.169), (0.91,0.211), (1.01,0.309), (1.10,0.343), (1.29, 0.501)). The tracks are meas-
ured over 100 000 MCS, with the start of each track shifted to the centre. Different tracks are
depicted with different colors. (C) For the same subset of persistence levels as shown in B,
cell tracks of single-cell simulations (100 000 MCS) are shown. The tracks become lighter
with age to indicate directionality. The right-most cell track is of a single cell with strong,
lymphocyte-like persistence (µ = 16, s = 8), parameters are as in Vroomans et al., PLoS
Comp. Biol. 2011. Note the qualitative difference: the cell turns less often, and has more
straight stretches (field size 2000x2000). N.B. Track does not become lighter with age.
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Chapter 5. Convergent extension and segmentation

Figure S5.5. Opposing adhesion gradients lead to (partial) sorting out of tissue. The
graph shows how the adhesion proteins are distributed in the tissue, and the corresponding cell
colour. The images show the tissue at the end of the simulation (2,000,000 MCS) for varying
strengths of the maximum adhesion difference mm, without or with persistence (parameters
µ: 2.0 and s: 30-40). Jc,m = 15, maximum Ji,j = 28.
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Figure S5.6. Opposing adhesion gradients lead to modest tissue extension. The graph
plots the length of the long axis of the tissue over simulation steps for varying values of the
maximum adhesion strength (mm: 12, 18, 24), and without or with persistence mechanism
(parameters µ: 1.0 and s: 10).Jc,m = 15, maximum Ji,j = 28.
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5.6 Supplementary information

5.6.1 On surface tensions and segment interfaces

In the differential adhesion hypothesis, tissues are assumed to behave like immiscible
fluids. When two drops of liquid have a positive interfacial tension, they reduce the con-
tact area with each other; there is a force pulling inwards on the interface and the drops
will round up. For a drop of liquid l on a surface s and in contact with the environ-
ment/air/medium e, Young’s equation tells us that when the equilibrium state (minimum
free energy) is reached, the contact angle θ of the drop with said surface is given by the
surface tensions involved (see figure A below, and e.g. Wikipedia - contact angle):

cos θ =
γs,e − γs,l

γl,e

Without gravity, a 2D droplet will form a circle cut off by the surface, which means
that from this angle and the total area of the droplet, we can calculate the amount of
equilibrium contact between the droplet and the surface. For this, we use the fact that the
droplet is a segment of the circle for θ < 1

2π, and that it is a circle with a segment missing
for θ > 1

2 . The area of a segment is given by 1
2 (α − sinα)r2, where α is the angle of

the sector enclosing the segment. See e.g. www.mathsisfun.com/geometry/circle-sector-
segment.html.

Please note that in our case, the area and the surface tensions are in arbitrary (model),
not physical units, and we mainly use this to deduce droplet shapes and ratios. Below, r
is the radius of the circle, A the area, L the amount of contact:

r =

√

2A

2 θ − sin 2 θ

L = 2 r sin θ

This can be extended to the situation where there are two drops of liquid adjacent to each
other, as is the case in our model (figure b). In our calculations we assume that these two
liquids have the same surface tension with the medium γc,m and a (positive) tension with
each other γr,g . The angle then is given by:

cos θ =
−γr,g
2 γc,m
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The calculation of the length of the interface then remains the same. Note that θ is 1
2 π

for γr,g = 0. If γr,g < 0, the two liquids will mix instead, forming one homogeneous
spherical blob (Glazier & Graner, Phys. Rev. E 1993).

The preservation of aspect ratio for larger tissues

In the section concerning persistence, we assume that tissues of different sizes with
the same number of segments and the same surface tensions, will end up with the same
aspect ratio ( lengthwidth ). This follows from the equations above. With the same surface
tensions, the angles will be the same for the larger tissue, only the area of each segment
is four times as large (we doubled both the length and the width of each segment). The
radius of the circle then doubles, and so does the equilibrium contact length. In other
words, if we start with a tissue that is twice the size in every dimension (so same aspect
ratio), we end up with an elongated tissue with twice the equilibrium contact length, so
still the same aspect ratio.
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5.7 supplementary videos

• S1 Video Simulation with graded adhesion, strength w = 11, and no segment-
specific adhesion. Duration is 500 000 MCS.

• S2 Video Simulation with axial adhesion, strength β = 2, and no segment-specific
adhesion. Duration is 500 000 MCS.

• S3 Video Simulation with graded adhesion, strength w = 11, and segment-specific
adhesion (γr,g = 4). Duration is 500 000 MCS.

• S4 Video Simulation with axial adhesion, strength β = 2, and segment-specific
adhesion (γr,g = 4). Duration is 500 000 MCS.

• S5 Video Simulation with segment-specific adhesion, (γc,m = 6, γr,g = 10 ).
Duration is 1 000 000 MCS.

• S6 Video Simulation with segment-specific adhesion (segment collapse), (γc,m =

10, γr,g = 14). Duration is 1 000 000 MCS.
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“It’s still magic even if you know how it’s done.”

Terry Pratchett, A Hat Full of Sky
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Animal segmentation is a well-studied developmental process with a rich history of
theoretical modelling. In this thesis, we built on this earlier work to address several open
questions, focusing on specific aspects of the developmental mechanism and its evolu-
tion. In chapter 2 we investigated the evolution and potential function of the frequency
gradient (responsible for travelling waves) in vertebrate segmentation. In chapter 3 we
studied how differences in the somite boundary determination mechanism of three ver-
tebrate species, result in different abnormal phenotypes. In chapter 4 we asked under
what conditions posterior growth and sequential segmentation can evolve. And finally
in chapter 5 we investigated the interplay between convergent extension and an exist-
ing segment pattern. In this final chapter I will provide a synthesis of these topics, and
demonstrate how together, they contribute to a more comprehensive understanding of the
mechanism and evolution of sequential segmentation.

6.1 Making waves – frequency gradients

One of the most characteristic features of vertebrate somitogenesis is the wave of gene
expression that travels from the posterior to the anterior PSM, a phenomenon caused by
the slowing of gene expression oscillations towards the anterior PSM. With regards to its
function, previous studies have argued that such a frequency gradient may be a necessary
feature of the somite determination mechanism, by slowing down and ultimately freezing
the oscillation phase (Jaeger and Goodwin, 2001), or because it creates a phase difference
in the anterior PSM between the travelling wave oscillator and a second oscillator, which
then triggers somite formation (Beaupeux and François, 2016, Harima and Kageyama,
2013). In other models, the frequency gradient arises spontaneously as a result of the un-
derlying somite determination mechanism, such as synchronisation with frozen anterior
cells (Murray et al., 2011) or reaction-diffusion dynamics (Cotterell et al., 2015). Altern-
atively, there is some experimental evidence that the posterior Wnt gradient influences the
speed of oscillations (Gibb et al., 2009). While investigating asymmetric somitogenesis
in chapter 3, we found that the frequency gradient may have a different role in different
vertebrate species. In zebrafish, the timing of somite formation is dictated by the speed
of the travelling wave, while somite size is dictated by how far the FGF gradient retracts
during one cycle. We speculated that the travelling wave may instigate somite polarity
by switching on the determination program with a posterior-to-anterior timing. In mouse
instead, the travelling wave oscillator seems to interact with an oscillator with fixed fre-
quency (Harima and Kageyama, 2013, Niwa et al., 2011). Due to the frequency gradient,
these two are out of phase in the anterior: when the travelling wave reaches the anterior,
the fixed frequency oscillator is in a low expression phase and a somite forms (similar
to the mechanism in (Beaupeux and François, 2016)). Thus, the frequency gradient here
determines the size of a somite, but not the timing of its formation.
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In chapter 2, we showed that frequency gradients can evolve spontaneously. They arise
a bit more often in tissues with a shallow, far-reaching morphogen gradient, which have
a larger undifferentiated region anterior to the tailbud than tissues with a steep gradient:
there is simply more room for waves with a shallow gradient. Strikingly, the percentage
of simulations evolving a frequency gradient significantly increased in the presence of
gene expression noise, indicating that frequency gradients may have a function in noise
mitigation in shallow gradients. Tissues with a steep gradient instead only evolved more
persistent oscillations in the presence of noise in our simulations. We therefore concluded
that a combination of noise and a shallow gradient is required for the reliable evolution of
a frequency gradient. This is consistent with an earlier suggestion by El-Sherif et al.,(El-
Sherif et al., 2014), that frequency gradients may lead to sharper segment boundaries in
the presence of noisy morphogen gradients. There is a caveat however: segmentation
took longer to evolve in simulations with a shallow gradient than in simulations with a
steep gradient. We therefore speculate that persistent oscillations may have first evolved
in the presence of noise and a steep gradient, and that a shallow gradient and consequent
frequency gradient evolved secondarily.

The segmentation process of invertebrate animals supports the notion that segmenta-
tion evolved in tissues with a steep gradient. Take for instance the cephalochordate am-
phioxus, a model species from the sister group to vertebrates; this animal does not have
an extensive PSM, instead its somites bud off directly from the tailbud (Beaster-Jones
et al., 2008). The short-germ insect Tribolium also has a short unsegmented region, with
stripes that travel only a small distance before halting (El-Sherif et al., 2012); this is
likely also true for other arthropods (Brena and Akam, 2013). So why do vertebrates
have such a long unsegmented region with long-range, shallow morphogen gradients and
a frequency gradient? To answer this, we may need to consider that amphioxus has asym-
metric somites: somitogenesis is not buffered against the left-right signalling pathway.
Indeed, the antagonistic FGF and RA gradients – which are essential for (symmetric) ver-
tebrate somitogenesis – do not play an important role in somite formation in amphioxus
(Bertrand et al., 2011, 2015). This suggests that the activity of FGF and RA gradients
in vertebrate somitogenesis may have evolved to generate symmetric somites, which is
required for proper development of the vertebrae (Brent, 2005). We speculate that the in-
teractions between these gradients increased the size of the undifferentiated PSM, either
to act explicitly as a buffer for small asymmetries, or just as a side-effect of their ant-
agonism. Our simulations with a shallow gradient and gene expression noise (which is
always present in biological systems) often yield frequency gradients across the unseg-
mented tissue, which suggests that the recruitment of FGF and RA would likely have
been followed by the evolution of a frequency gradient. Once such a frequency gradi-
ent evolves, the resulting travelling wave could be adapted for roles in somite polarity
determination or even become an essential part of the mechanism, like those we saw in
chapter 3.
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Arthropods also have left-right asymmetries, yet only a short unsegmented region prob-
ably associated with a steep morphogen gradient and absent or limited a frequency gradi-
ent. This suggests that there is no compensatory mechanism protecting segmentation
from left-right asymmetries such as in vertebrates, but still their segments are symmetric.
It turns out that Drosophila and perhaps also other insects establish left-right asymmetry
in particular organs at a later stage than segmentation, precluding any interaction between
these two processes (Namigai et al., 2014). Furthermore, in arthropods, segmentation ap-
plies to all tissues, which are connected during segment generation; thus there is no need
to coordinate the left and right parts as extensively as in vertebrates, where the left and
right PSM are fully separated.

Future directions An intriguing direction for future research is to unravel the molecu-
lar interactions between the left-right pathway and somitogenesis in different species, and
the compensatory mechanism that allows for symmetric somitogenesis. Once more elab-
orate experimental data are available, we can extend the phenomenological descriptions
used in chapter 3. We can also approach this from a different angle, using evolutionary
simulations to investigate what kind of compensatory mechanisms can evolve, and how
this influences the evolution of the somite boundary formation mechanism. Furthermore,
these simulations could potentially give more insight into the transition from amphioxus-
like, steep-gradient segmentation to vertebrate, shallow-gradient segmentation.

6.2 Making shapes – axis extension

While it is an interesting question whether the common ancestor of bilaterians was
segmented, it has not received a lot of attention in this thesis. Rather, we focused on
the question why almost all animals generate their segments sequentially, which is in-
teresting even if segmentation arose through common ancestry. In previous computa-
tional studies, it was shown that sequential segmentation easily evolves, is evolvable,
and robust to gene expression noise (François et al., 2007, ten Tusscher and Hogeweg,
2011). In chapter 4 however, we showed that despite these favourable properties, se-
quential segmentation does not evolve in the absence of a posterior signalling centre.
Instead, a less robust mechanism emerged which relied on noise in division timing or
cell-cell signalling, and in which all segments were generated at roughly the same time
after a tissue-wide burst of divisions. Once we imposed a persistently present posterior
morphogen, sequential segmentation indeed became the most frequently evolving seg-
mentation strategy. Furthermore, we showed how a selection pressure for determinate
growth should only emerge secondarily, in order for sequential segmentation to evolve.
Our results demonstrate the importance of prior evolutionary innovations (e.g., posterior
morphogen signal), and concurrent selection pressures (e.g., for determinate growth) for
the type of mechanism that evolves.
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In chapter 4, we assumed for simplicity that the main mechanism of axis extension is
cell division. For vertebrate somitogenesis, this may be a good approximation: although
the shape of the main axis is mostly generated via convergent extension, the PSM itself
is laid down via divisions and/or cell ingression in the retracting tailbud (Tada and Heis-
enberg, 2012, Wilson et al., 2009). Cells are thus "deposited" by the tailbud, which can
be reasonably approximated by posteriorly localised divisions. In annelids, while there
is no evidence for a segmentation clock, posterior growth is definitely responsible for
segment addition (Balavoine, 2014). In arthropods instead, divisions are not restricted to
the posterior undifferentiated zone and would anyway be insufficient for axis extension
(Mayer et al., 2010, Nakamoto et al., 2015). There is also no active retraction mechan-
ism like the vertebrate node, so the randomly oriented cell divisions in this posterior zone
would more likely contribute to a blob than an extended axis. Instead, convergent exten-
sion is the major driver of axis extension; it occurs in the region where segments form in
sequentially segmenting arthropods (like Tribolium), and after segment specification in
simultaneously segmenting animals (like Drosophila).

We showed in chapter 5 that convergent extension can disturb an already-formed seg-
mented pattern, but that segment-specific adhesion can prevent this. Moreover, segment-
specific adhesion can actually drive convergent extension by itself, providing a direct way
in which the insect segmental pattern could generate convergent extension. Segment-
specific adhesion can also inform the directionality of an initially randomly oriented act-
ive cell migration mechanism, which may provide the energy required for tissue shape
change. It has been shown that the Toll receptors that drive convergent extension in many
arthropod species, are expressed in stripes (a pattern likely informed by the pair-rule
genes (Benton et al., 2016)). In Drosophila, these receptors inform actomyosin contract-
ile cell polarity rather than driving convergent extension via segment-specific adhesion
(Benton et al., 2016, Irvine and Wieschaus, 1994, Mao and Lecuit, 2016, Paré et al.,
2014, Zallen and Wieschaus, 2004). We speculate that in other arthropods, segment-
specific adhesion might play a role instead, or act in combination with cell-level actomy-
osin polarity.

We speculate that even if sequential segmentation evolved in parallel, arthropods and
vertebrates started with very similar-looking mechanisms. Axis extension may have been
very simple, with posterior divisions generating most of the main body axis. This allows
for the rapid evolution of a segmentation mechanism with a simple clock operating in the
posterior zone. (We will ignore for the moment the issue whether axis extension evolved
before segmentation (Jacobs et al., 2005), as well as the confounding possibility of a
complex life cycle.) Very early in the lineage leading to velvet worms and arthropods,
the mechanism in which the stripes drive convergent extension may have evolved, which
would have made posteriorly localised divisions less important for axis elongation. As a
consequence, more widespread divisions could have evolved (nearly) neutrally, leading
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to the patterns we see now in Tribolium and velvet worms (Mayer et al., 2010, Nakamoto
et al., 2015). Ultimately, this could have paved the way for the Drosophila style, simul-
taneous segmentation, where axis extension is necessarily driven by (segment-mediated)
intercalation (Irvine and Wieschaus, 1994). In vertebrates, the restriction of segmentation
to part of the mesoderm may have made it more difficult to let the segmentation pattern
dictate overall axis extension. Instead, the overall mechanism of axis extension (divi-
sions or convergent extension) varies between vertebrates depending on the availability
of resources for the embryo (Steventon et al., 2016). Differential adhesion could rather
drive the separation of somites (Hester et al., 2011), and may guide their epithelialisation
process (Dias et al., 2014).

Future directions In this thesis, we left the evolutionary order of posterior growth and
sequential segmentation mostly unexplored, since our current results do not allow us to
determine whether posterior growth evolved simultaneously with, or prior to, sequential
segmentation. In the case of prior evolution of posterior growth, determinate growth also
could have evolved prior to segmentation, while our current work suggests that this is
unlikely if posterior growth and segmentation evolve concurrently. Furthermore, we did
not take into account the existence of other patterning processes that occur at the same
time as axis extension and segmentation, and which may influence their evolution. For
example, the HOX genes divide the main body axis into several regions with different
fates, and are connected to the segmentation clock in vertebrates (Cordes et al., 2004,
Zákány et al., 2001), and required for the termination of posterior growth (Denans et al.,
2015). Thus, the prior or simultaneous evolution of HOX patterning with growth and
segmentation, may provide a signal for terminating growth at the right time during de-
velopment. This could potentially resolve the bias towards simultaneous segmentation
when selecting for determinate growth, allowing for the concurrent evolution of determ-
inate posterior growth and sequential segmentation.

Another interesting new direction is the evolution of segment-driven convergent ex-
tension as observed in arthropods. In order to investigate this, the current evolutionary
models should be extended to 2D tissues, with the possibility to regulate tissue remod-
elling mechanisms such as differential adhesion. This would also provide additional
degrees of freedom for evolution to explore; for instance, such an extended model might
yield new insights into the evolution of segment splitting (period doubling) observed in
Tribolium (Clark and Akam, 2016, Sarrazin et al., 2012).
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6.3 Using developmental and evolutionary models

The models we used in this thesis are relatively simple, trying to explain particular
phenomena or assess evolutionary consequences with a fairly minimal set of underlying
assumptions. We used the developmental models in chapters 3 and 5 as tools for testing
the developmental consequences of known mechanisms and exposing what information
is still missing: for example, the effect of convergent extension on a segmented pattern
in chapter 5. In the evo-devo models of chapters 2 and 4 instead, we had in mind what
type of developmental phenomenon we want to obtain – a frequency gradient (chapter
2), or sequential segmentation (chapter 4) – and investigated what prior conditions are
required for this mechanism to be the predominant outcome in our simulations (similar
to (Troein et al., 2009)). Note that we do not directly select for the mechanism we
are looking for, but for a more general outcome – a segmented pattern at the end of
development. The evolutionary process is therefore free to generate any mechanism to
accomplish this final pattern. We thereby found that despite the favourable properties
of sequential segmentation, it does not always evolve, for instance in the presence of
a selection pressure for determinate growth. Thus, our work is a nice example of the
importance of prior conditions for the type of mechanism that evolves (François, 2014).

A disadvantage of our evo-devo models is their larger complexity compared to the de-
velopmental models, as they incorporate scales of organisation ranging from the genome,
through the individual to the population. This also means that the outcome is not always
easy to interpret and may require extensive analysis. Chapter 2 is a prime example of
this. We set out to find differences between networks evolved in tissues with steep or
shallow gradients, which proved to be difficult due to the size and sheer entanglement
of the evolved networks. To circumvent this issue and to analyse many simulations ef-
ficiently, we developed an automated pipeline to assess the general network properties
(size, connections) and perform Fourier analysis on the oscillatory dynamics of the net-
work. The Fourier analysis revealed the existence of frequency gradients, the presence
of which we suspected from the space-time plots. Moreover, the pipeline allowed us to
assess the likelihood of evolving frequency gradients in several different conditions, such
as the presence of expression noise or the availability of cell-cell signalling. We applied
a similar approach in chapter 4: while we did look into the details of particularly interest-
ing evolved mechanisms, we again mainly focused on the larger pattern of evolutionary
likelihood, this time of sequential segmentation in general.

Our way of assessing evolutionary likelihood in chapters 2 and 4 is different from the
approach in previous studies on in silico evolution of segmentation (François et al., 2007,
Salazar-Ciudad et al., 2001a, ten Tusscher and Hogeweg, 2011). These studies did not
explicitly assess the likelihood of a particular mechanism but instead demonstrated that,
compared to the other mechanisms that evolved in silico, the mechanism that actually is
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present in animals has more favourable properties – such as robustness and evolvability.
They also showed how sequential segmentation can easily evolve gradually from scratch,
from simple small networks producing few segments, to more complex networks gener-
ating many (François et al., 2007, ten Tusscher and Hogeweg, 2011). As we focus more
on the likelihood of evolving a particular mechanism, we also try to connect our results
more strongly to the actual evolutionary history of segmentation. We should note that
these are model-guided suggestions, not absolute statements: our models are not able to
prove that a specific evolutionary trajectory was actually taken, only to suggest that one
is more likely than another.

6.4 Moving models beyond standard clock-and-wavefront

Somite polarity determination In this thesis as well as the work of others, the evolu-
tionary simulations worked with a fairly simple fitness criterion: segments are defined by
the alternating high and low expression of a single gene, with the high and low expres-
sion domains possibly representing segment polarity, or a higher-level double segment
periodicity. The result of selection for this phenotype is typically a mechanism that com-
bines oscillation with a bistability motif, translating the oscillation phase directly to one
of two alternative attractors upon passing of the wavefront. The superimposed wavefront
or morphogen gradient retraction results in the cell-by-cell transition from oscillations to
determination, i.e., the point of segment determination also retracts smoothly ((François
et al., 2007, ten Tusscher and Hogeweg, 2011), chapters 2 and 4); furthermore, high- and
low expression stripes are formed consecutively. While these dynamics seem to corres-
pond well to arthropod segmentation, this is not the case for vertebrates, where somites
are first defined as a block with roughly homogeneous expression before resolving into
a clear anterior and posterior half (Harima and Kageyama, 2013, Oginuma et al., 2010).
During somitogenesis, oscillations terminate well after somite boundary definition has
occurred (Shih et al., 2015), while in our simulations the two events are simultaneous
(chapter 2,4). If we want to study the evolution of vertebrate segmentation more in-
depth, we may need to consider different patterning criteria and functional constraints in
the model.

An alternative could be to first select for block-like formation of segments, like the
blocks in the original clock-and-wavefront model (Cooke and Zeeman, 1976). A recent
study selected for the detection of a phase difference between two oscillators, which
also yielded roughly block-like somite formation and which is reminiscent of the mouse
mechanism we implemented in chapter 3 (Beaupeux and François, 2016). Perhaps somite
polarity can then be selected for secondarily, a trick we also used for determinate growth
in chapter 4. Conversely, it could be that the block-like mechanism evolved secondarily
from a cell-by-cell determination mechanism, perhaps in conjunction with a frequency
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gradient (see section 6.1). To resolve this, we need more experimental data on somite
polarity determination in amphioxus and other early-branching chordates.

An alternative patterning mechanism Recently, a different somite patterning mech-
anism was proposed based on an ensemble approach, investigating all three-gene net-
works capable of performing sequential segmentation (Cotterell et al., 2015). Strik-
ingly, the dominant mechanism emerging from this study was not a clock-and-wavefront
model, but a reaction-diffusion mechanism (PORD), where an inhibitor diffusing from
the formed somites causes the formation of the next somite. The biggest difference
between this mechanism and the more widely-accepted clock and wavefront mechan-
ism is that the PORD mechanism does not rely on the morphogen gradients to instruct
the position of the determination front (Cotterell et al., 2015). Regardless of the ques-
tion whether the PORD model is the actual mechanism behind (all) vertebrate species
(or even applicable to insects?), it is an interesting new mechanism, especially since the
ensemble approach suggests that it is the more robust and likely evolutionary outcome
(Cotterell et al., 2015). In general, it is an interesting question whether evolution can
select a solution with as simple a core as a three gene network. Furthermore, as we
discussed in the previous section, a mechanism with selective advantages like robustness
may still not be the one that evolves, and to our knowledge, none of the evolutionary sim-
ulations has yielded a purely PORD-like mechanism; a similar mechanism only evolved
in combination with feed-forward mechanisms, yielding roughly simultaneous segmen-
tation (Kohsokabe and Kaneko, 2016). This could be due to a lack of diffusive gene
products in the models with a retracting morphogen wavefront (in this thesis we only
included direct cell-cell signalling for example). It would be an interesting exercise to
see if and when a PORD-like mechanism can evolve, which would also provide more
arguments for or against the model itself.

From sequential to simultaneous segmentation In this thesis we mostly ignored sim-
ultaneous, Drosophila-like segmentation. This mode is thought to have evolved second-
arily from a sequential mode, but how this happened is only recently becoming more
clear (Clark and Akam, 2016), El-Sherif and Fran cois, personal communication). In
chapter 4, individuals with sequential segmentation transitioned to a simultaneous mode
once the selection for determinate growth became too high. This was not a smooth trans-
ition – individuals first lost the ability to grow and make segments, then invented the
simultaneous mode from scratch. Moreover, this evolved simultaneous mechanism did
not resemble the hierarchical manner in which Drosophila generates its segments. It
would be very exciting to investigate what priorly evolved developmental processes, and
what genetic and cellular tools are required to make a smooth transition possible from
sequential segmentation to a truly Drosophila-like mode. Consider for instance the tis-
sue dynamics: there is a whole range of short, intermediate and long-germ insects, which
generate very few to all of their segments in the early syncytial stage before cells are
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formed and the body axis takes shape. To enable a smooth transition, it may therefore be
necessary to add the evolution of a syncytial stage to the model. Besides the smoothness
of the transition, the model should be able to evolve the genetic hierarchy of Drosophila,
which specifies each segment with a unique combination of upstream genes. Previous
evolutionary models have shown that selection for a specific tissue pattern may yield a
hierarchical mode of segmentation (François et al., 2007, Salazar-Ciudad et al., 2001a),
so requiring the preservation of the specific priorly evolved pattern may aid in obtaining
a Drosophila-like simultaneous mode. Evolving hierarchic gene regulation may be fur-
ther facilitated by selection for axis regionalisation, like in (ten Tusscher and Hogeweg,
2011).

6.5 Concluding remarks

Modelling has a solid place in research on segmentation; from the very first model by
Cooke and Zeeman to the most recent developments on the clock-to-stripe transition.
We contributed with evolutionary and developmental models that give insights into the
process of vertebrate somitogenesis and on the interplay between axis extension and seg-
mentation. As we discussed here, there are still plenty of open questions about segmenta-
tion, which will require several different approaches, both theoretical and experimental.
We think that ultimately, segmentation should be studied within the greater context of
early embryonic development and its evolution, not as an isolated mechanism.
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Samenvatting

Segmenten zijn herhaalde structuren langs de hoofd-staartas, die bij veel dieren
voorkomen: denk bijvoorbeeld aan de ringen van regenwormen, de ringen met pootjes
van duizendpoten of de ruggenwervels van gewervelden. Deze structuren worden al zeer
vroeg tijdens de embryonale ontwikkeling aangelegd. Meestal worden ze één voor één
geproduceerd vanuit een groeizone, een weefsel dat aan het begin van de ontwikkeling
net achter het hoofd ligt, en hier steeds verder vanaf komt te liggen naarmate er meer
segmenten zijn gevormd – dit wordt sequentiële segmentatie genoemd. Voordat segmen-
ten hun uiteindelijke vorm krijgen, worden de grenzen tussen segmenten en tussen de
verschillende delen van elk segment vastgesteld door een gestreept patroon van verschil-
lende segmentatiegenen in het embryonale weefsel. In insecten en gewervelden1 gebeurt
dit door de interactie tussen een moleculaire klok en een morfogengradiënt in de celllen
in het weefsel dat word gesegmenteerd. De klok bestaat uit meerdere genen, wiens ex-
pressie afwisselend hoog en laag is (oscilleert): de periode van deze oscillaties bepaalt
het tempo waarmee segmenten gevormd worden. Het morfogen is een speciaal eiwit dat
cellen informeert over hun plek in het te segmenteren weefsel. Dit eiwit heeft een hoge
concentratie in de groeizone, maar neemt af richting het hoofd waar de reeds gevormde
segmenten liggen. Waar de concentratie van het morfogeneiwit laag genoeg is, worden
de oscillaties van de klok omgezet in een gedifferentieerd segment. Het mechanisme
waarmee dit gebeurt staat echter nog steeds ter discussie. Ook over de evolutionaire oor-
sprong van segmenten is nog veel onduidelijk: was de voorouder van de segmenteerde
dieren ook gesegmenteerd? Welke evolutionaire selectiedrukken waren verantwoordelijk
voor het ontstaan van de huidige segmentatiemechanismen?

In het onderzoek naar segmentatie worden regelmatig computermodellen gebruikt om
hypotheses te testen. Computermodellen zijn uitermate geschikt om complexe mechan-
ismen mee te ontrafelen en om evolutionaire hypotheses te testen; in een computer kan
een evolutionair process van duizenden jaren worden gesimuleerd in enkele dagen, en
vele malen herhaald onder verschillende condities. In dit proefschrift gebruiken we dan
ook computermodellen om de evolutie en het mechanisme van sequentiële segmentatie
te onderzoeken.

1Segmenten worden op een heel andere manier aangelegd in annelide wormen. Hier is minder over bekend,
en we behandelen het niet in dit proefschrift.
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In het eerste deel richten we ons op specifieke kenmerken van segmentatie in gewervelden,
en in het tweede deel op de algemene relatie tussen het segmentatiepatroon en de groei
van het weefsel.

In zowel insecten als gewervelden zijn een klok en morfogengradiënt betrokken bij
segmentatie, maar er zijn verschillen: in gewervelden is de morfogengradiënt lang en
gradueel, terwijl deze in insecten een stuk steiler en korter lijkt te zijn. Ook suggereren
de beschikbare data dat de moleculaire klok in gewervelden complexer is (uit meer in-
teracterende genen bestaat) dan in insecten. In hoofdstuk 2 onderzoeken we of en hoe de
lengte en steilheid van de morfogengradiënt de evolutie van de klok beïnvloedt wat betreft
het aantal betrokken genen en de dynamica van de oscillaties. We zien dat een langere,
minder steile (flauwe) gradiënt de evolutie van segmenten ietwat bemoeilijkt, en leidt
tot de evolutie van grotere genregulatienetwerken. Bovendien leidt het net iets vaker tot
de spontane evolutie van een zogeheten frequentiegradiënt, waarbij oscillaties langzamer
worden bij een lagere morfogen-concentratie voordat de cellen differentiëren - dit is een
kenmerkende eigenschap van segmentatie in gewervelden. Evolutie leidt vaker tot een
frequentiegradiënt als er noise (ruis) zit in de genexpressie en de morfogengradiënt lang
en flauw is, wat suggereert dat gewervelden mogelijk een frequentiegradiënt evolueerden
om het effect van ruis te verminderen. Onze resultaten suggereren dat insecten, met hun
steile morfogengradiënt, minder kans hadden om een frequentiegradiënt en complexe
klok te evolueren.

Een ander essentieel kenmerk van segmentatie in gewervelden is de gelijktijdige, sym-
metrische aanleg van segmenten aan beide zijden van de notochord2. Als echter een van
de betrokken morfogenen, retinoic acid (retinezuur), afwezig is, dan worden segmen-
ten asymmetrisch gevormd onder invloed van het links-rechts-differentiatiesysteem, met
ernstige gevolgen voor de verdere ontwikkeling van het dier. Maar de ernst van het
asymmetrische fenotype verschilt tussen diersoorten: in de zebravis is er sprake van een
tijdelijke vertraging in de segmentvorming aan de rechterkant, die later netjes wordt op-
gelost, terwijl in muis de segmenten ook scheef worden aangelegd, of soms zelfs afwezig
blijven. In hoofdstuk 3 laten wij zien hoe deze verschillen kunnen worden verklaard aan
de hand van verschillen in het segmentatie-mechanisme van deze diersoorten. Wij con-
cluderen dat de verschillen in segmentatiemechanisme tussen de soorten niet volledig
functioneel neutraal zijn. We wijzen in dit hoofdstuk op onbekende factoren in de mech-
anismen van verschillende diersoorten, en doen suggesties voor de interacties tussen het
links-rechts differentiatiesysteem en segmentatie.

2een centrale buis die later de kern van de ruggenwervel vormt
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Zoals we eerder vermeldden, is sequentiële segmentatie de meest voorkomende vorm
van segmentontwikkeling. In hoofdstuk 4 onderzoeken we wat voor condities nodig zijn
om sequentiële segmentatie inderdaad de meest waarschijnlijke evolutionaire uitkomst
te laten zijn in onze simulaties, waarin zowel de locatie van celdelingen als het genex-
pressiepatroon kunnen evolueren. Met andere woorden: we willen achterhalen onder
welke omstandigheden sequentiële segmentatie met een groeizone is geëvolueerd, en in
welke volgorde bepaalde eigenschappen zijn ontstaan. Onze simulaties laten bijvoor-
beeld zien dat een morfogengradiënt vanuit de staart noodzakelijk is voor de evolutie van
sequentiële segmentatie met een groeizone in de staart: zonder zo’n gradiënt evolueert
een minder robuuste vorm van segmentatie waarbij alle segmenten tegelijkertijd gevormd
worden. Als de morfogengradiënt wel aanwezig is, wordt sequentiële segmentatie ruim
de dominante evolutionaire uitkomst. We verliezen deze dominantie echter weer als er
ook een selectiedruk is voor het op tijd stoppen met celdelingen aan het einde van in silico

segmentontwikkeling (gedetermineerde groei). We concluderen dat voor de evolutie van
sequentiële segmentatie, een staartzone met een duidelijke identiteit en de potentie voor
het produceren van een morfogengradiënt aanwezig moet zijn geweest, en dat gedeter-
mineerde groei waarschijnlijk niet tegelijk met sequentiële groei is geëvolueerd.

In hoofdstuk 5 bekijken we de interactie tussen het gestreepte genpatroon en de vorm-
ing van de lichaams-as. We laten zien dat eerder voorgestelde mechanismen voor con-
vergente extensie (het langer en smaller worden van weefsel) een bestaand segment-
atiepatroon kunnen verstoren. Als cellen met dezelfde identiteit in een segment sterker
aan elkaar hechten dan aan andere cellen, blijft het patroon wel behouden; sterker nog,
deze “segment-specifieke adhesie” kan zelf zorgen voor extensie van de lichaamsas. Als
we bovendien toestaan dat cellen bewegen, kan deze adhesie deze beweging omzetten in
convergente extensie. Dit resultaat suggereert dat vergaande interacties tussen de vorm-
ing en segmentatie van de lichaamsas mogelijk zijn en meer aandacht verdienen in ex-
perimenten.

De resultaten in dit proefschrift geven nieuwe inzichten in het mechanisme en de
evolutie van segmentatie, en wijzen op nieuwe richtingen voor verder onderzoek.
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